F=ma=mdvdt→v=1m∫F(t)dtF=ma=m\frac{dv}{dt}\to v=\frac{1}{m}\int F(t)dtF=ma=mdtdv→v=m1∫F(t)dt
v=1m∫(t2+6−t3+5)dt=1m(t3/3+6t−t4/4+5t)+C=v=\frac{1}{m}\int (t^2+6-t^3+5)dt=\frac{1}{m}(t^3/3+6t-t^4/4+5t)+C=v=m1∫(t2+6−t3+5)dt=m1(t3/3+6t−t4/4+5t)+C=
=1m(t3/3+11t−t4/4)+C=\frac{1}{m}(t^3/3+11t-t^4/4)+C=m1(t3/3+11t−t4/4)+C
if t=0t=0t=0 v=0→v=0 \tov=0→ C=0C=0C=0
We have
v=1m(t3/3+11t−t4/4)=1120/9.81(33/3+11⋅3−34/4)=1.78m/sv=\frac{1}{m}(t^3/3+11t-t^4/4)=\frac{1}{120/9.81}(3^3/3+11\cdot 3-3^4/4)=1.78 m/sv=m1(t3/3+11t−t4/4)=120/9.811(33/3+11⋅3−34/4)=1.78m/s
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments