∮|z|=1 (2z+z̄)dz `.
A)0. B)πi. C)2πi. D)4πi
`Let f(z)=sinz/z^{4} . Then z=0 is`. A)simple pole. B) pole of 3 rd order. C)pole of 4th order. D) Essential singularity
`The radius of convergence of the Taylor series expansion of the function f(z)=4z^{2}+3z/(z-1)^{2}(z+4)(z-3) abou z=-1 is.
A)0.
B)2
C)3
D) infinity
The function f(z)=|z|^{2} is differentiable.
A)only at z=0. B) nowhere.
C) everywhere. D)only at z=1
The solution of p^{2}+q^{2}=2 is. A)z=ax+(2-a)y+b
B)z=ax+(2-a)^2y+ b. C)z=ax+by. D))z=ax+(✓2-ay+ b
The singular integral of z=xp+yq-logpq. A)z= x^2+y^2. B)z= x^2-y^2. C)z= x^2+y^2-logxy.
D)z= x^2-y^2-logxy.
The differential equation of (x-a)^{2}+(y-b)^{2}+z^{2}=21. A)z^2(p^2+q^2)=1. B)z^2(p^2+q^2)=21. C))z^2(p^2+q^2+1)=1. D))z^2(p^2+q^2+1)=21.
∫0^{π}cos3t 𝛿(t-2π) dt. A)-1. B)0. C)1. D) infinity
L^{-1} 1/s^{2}+4s+4 }.
A) te^-2t. B)te^2t. C)te^4t. D) te^-4t.