Question #230837

A petrochemical plant in Jurong Island produces formaldehyde (CH2O) industrially by the catalytic oxidation of methanol (CH3OH). The following is the chemical reaction: CH3OH + ½O2 → CH2O + H2O --- (Equation 1) Unfortunately, a significant portion of the formaldehyde will react with oxygen to produce CO and H2O. The following is the side reaction: CH2O + ½O2 → CO + H2O --- (Equation 2) Assume twice the stoichiometric amount of air needed for oxidation (include Equation (1) and Equation (2)) is fed to the reactor. The conversion of methanol is 90% in the reactor. The outlet stream of the reactor was analysed and found to be 150 kg/hr of formaldehyde, 30 kg/hr of CO and other components.

(i) Determine the mass flowrate (kg/hr) of Stream A. ( 4 marks ) (ii) Determine the molar flowrate (kg-moles/hr) of Stream B. ( 4 marks ) (iii) Determine the mass flowrate (kg/hr) of water in the outlet stream. ( 4 marks ) (iv) Determine the molar composition in the outlet stream. ( 5 marks )


1
Expert's answer
2021-08-31T01:48:54-0400

CH3OH+½O2CH2O+H2O(Equation 1)    x mole     2x mole     0     0    x(10.9) mole     2x0.9x2 mole     0.9x     0.9xCH2O+½O2CO+H2O(Equation 2)    0.9x      20.9x      0     0    0.9xy      2x0.9x2      y     yCH_3OH + ½O_2 → CH_2O + H_2O --- (Equation \space 1)\\ \implies x \space mole \space \space \space \space \space 2x \space mole \space \space \space \space \space 0 \space \space \space \space \space 0\\ \implies x(1-0.9) \space mole \space \space \space \space \space 2x-\frac{0.9x}{2} \space mole \space \space \space \space \space 0.9x \space \space \space \space \space 0.9x\\ CH_2O + ½O_2 → CO + H_2O --- (Equation \space 2)\\ \implies 0.9x \space \space \space \space \space \space 2-0.9x \space \space \space \space \space \space 0 \space \space \space \space \space 0\\ \implies 0.9x-y \space \space \space \space \space \space 2x-\frac{0.9x}{2} \space \space \space \space \space \space y \space \space \space \space \space y\\

Mole of formaldehyde in the outlet

150kg/hr30g/mol=5000mol/hr0.9xy=5000y=30kg/hr28g/mol=1071.428mol/hr0.9x=500+1071.428x=6746.03mol/hr\frac{150 kg/hr}{30g/mol}= 5000 mol/hr\\ 0.9x-y=5000\\ y = \frac{30 kg/hr}{28g/mol}=1071.428 mol/hr\\ 0.9x=500+1071.428\\ x=6746.03 mol/hr


Part (i)

To find the the mass flow-rate (kg/hr) of Stream A we can denote it as x

x=6746.03molhrx=6746.03molhr32gmol1kg1000gx=215.87kg/hrx= 6746.03 \frac{mol}{hr}\\ x= 6746.03 \frac{mol}{hr}*\frac{32 g}{mol}*\frac{1 kg}{1000g}\\ x= 215.87 kg/hr


Part (ii)

To determine the molar flow rate (kg-moles/hr) of Stream B we can denote it as y

2x0.9y2z2=Air left2x0.96746.0321071.422=9920.63Steam B=2y=213492.06mol/hr    y=13.49kgmol/hr2x- \frac{0.9 y}{2}- \frac{z}{2}= Air \space left\\ 2x- \frac{0.9*6746.03}{2}- \frac{1071.42}{2}= 9920.63\\ Steam \space B = 2y = 2*13492.06 mol/hr\\ \implies y= 13.49 kgmol/hr


Part (iii)

Mass flow rate of water = 0.9x+y=7142015mol/hr0.9x+y= 7142015 mol/hr

Mass flow rate = 128.57kg/hr128.57 kg/hr

Mass flow rate of water = 0.9x+y=7142015mol/hr0.9x+y= 7142015 mol/hr


Part (iv)

The molar composition of CO = 1071.42823809.5119100=4.5%\frac{1071.428}{23809.5119}*100=4.5\%

The molar composition of H2O = 7142.8523809.511100=30%\frac{7142.85}{23809.511}*100=30\%

The molar composition of CH3OH = 674.60323809.511100=2.84%\frac{674.603}{23809.511}*100=2.84\%


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS