The components of the vector field are
P(x,y)=x2,Q(x,y)=x+y
Using the Green’s formula
∬R(∂x∂Q−∂y∂P)dxdy=∮CPdx+Qdy
we transform the line integral into the double integral:
I=∮Cx2dy+(x+y)dx=∬R(∂x∂(x+y)−∂y∂(xy))dxdy=∬R(2x−1)dxdy
∫02∫02x(2x−1)dydx=∫022x(2x−1)dx=320
Comments