Question #229931

Using Green's theorem,evaluate ∮c(x+y)dx+ x²dy, C is the triangle

with vertices at (0,0). (2,0) and (2, 4), taken in that order.


1
Expert's answer
2021-08-28T06:16:03-0400

The components of the vector field are

P(x,y)=x2,Q(x,y)=x+yP ( x , y ) = x^2 , Q ( x , y ) = x + y

Using the Green’s formula

R(QxPy)dxdy=CPdx+Qdy∬_ R (\frac{ ∂ Q}{ ∂ x} − \frac{∂ P}{ ∂ y} ) d x d y = ∮_ C P d x + Q d y

we transform the line integral into the double integral:

I=Cx2dy+(x+y)dx=R((x+y)x(xy)y)dxdy=R(2x1)dxdyI = ∮_ C x^2 d y + ( x + y ) d x = ∬_ R ( \frac{∂ ( x + y )}{ ∂ x} − \frac{∂ ( x y )}{ ∂ y} ) d x d y = ∬_ R ( 2x − 1 ) d x d y

0202x(2x1)dydx=022x(2x1)dx=203\int _0^2\int _0^{2x}\left(2x-1\right)dydx\\ =\int _0^22x\left(2x-1\right)dx\\ =\frac{20}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS