Using Green's theorem,evaluate ∮c(x+y)dx+ x²dy, C is the triangle
with vertices at (0,0). (2,0) and (2, 4), taken in that order.
The components of the vector field are
"P\n(\nx\n,\ny\n)\n=\nx^2\n,\nQ\n(\nx\n,\ny\n)\n=\nx\n+\ny"
Using the Green’s formula
"\u222c_\nR\n \n(\\frac{\n\u2202\nQ}{\n\u2202\nx}\n\u2212\n\\frac{\u2202\nP}{\n\u2202\ny}\n)\nd\nx\nd\ny\n=\n\u222e_\nC\n \nP\nd\nx\n+\nQ\nd\ny"
we transform the line integral into the double integral:
"I\n=\n\u222e_\nC\n \nx^2\nd\ny\n+\n(\nx\n+\ny\n)\nd\nx\n=\n\u222c_\nR\n \n(\n\\frac{\u2202\n(\nx\n+\ny\n)}{\n\u2202\nx}\n\u2212\n\\frac{\u2202\n(\nx\ny\n)}{\n\u2202\ny}\n)\nd\nx\nd\ny\n=\n\u222c_\nR\n \n(\n2x\n\u2212\n1\n)\nd\nx\nd\ny"
"\\int _0^2\\int _0^{2x}\\left(2x-1\\right)dydx\\\\\n=\\int _0^22x\\left(2x-1\\right)dx\\\\\n=\\frac{20}{3}"
Comments
Leave a comment