Question #223875

Solve dy/dx=4x^{2}(y-x)^{2}+y/x if y=x is a particular solution


1
Expert's answer
2021-08-28T06:16:08-0400

dydx=4x2(yx)2dy=4x2(yx)2dxdy4x2(yx)2dx=0\frac{dy}{dx}= 4x² (y-x)²\\ dy= 4x² (y-x)²dx\\ dy- 4x² (y-x)²dx=0\\

We know that Fx=(4x2(yx)2)\frac{\partial F}{\partial x}=\left(4x^2(y-x)^2\right)

    Fx=(4x2(yx)2)Taketheconstantout:af(x)dx=af(x)dx=4(yx)2x2dx4y2x22yx3+x4dxApplytheSumRule:f(x)±g(x)dx=f(x)dx±g(x)dx=4(y2x2dx2yx3dx+x4dx)=4(y2x33yx42+x55)+f(y)ddy(4(y2x33yx42+x55))+f(y)=4ddy(y2x33yx42+x55)+f(y)=4(ddy(y2x33)ddy(yx42)+ddy(x55))+f(y)=4(x42+2yx33)+f(y)F=4(x42+2yx33)+y\implies \int\frac{\partial F }{\partial x}=\int\left(4x^2(y-x)^2\right)\\ \mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx\\ =4\cdot \int \left(y-x\right)^2x^2dx\\ 4\cdot \int \:y^2x^2-2yx^3+x^4dx\\ \mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx\\ =4\left(\int \:y^2x^2dx-\int \:2yx^3dx+\int \:x^4dx\right)\\ =4\left(\frac{y^2x^3}{3}-\frac{yx^4}{2}+\frac{x^5}{5}\right)+f'(y)\\ \frac{d}{dy}\left(4\left(\frac{y^2x^3}{3}-\frac{yx^4}{2}+\frac{x^5}{5}\right)\right)+ f'(y)\\ =4\frac{d}{dy}\left(\frac{y^2x^3}{3}-\frac{yx^4}{2}+\frac{x^5}{5}\right)+\int f'(y)\\\\ =4\left(\frac{d}{dy}\left(\frac{y^2x^3}{3}\right)-\frac{d}{dy}\left(\frac{yx^4}{2}\right)+\frac{d}{dy}\left(\frac{x^5}{5}\right)\right)+\int f'(y)\\\\ =4\left(-\frac{x^4}{2}+\frac{2yx^3}{3}\right)+\int f(y)\\ F= 4\left(-\frac{x^4}{2}+\frac{2yx^3}{3}\right)+y\\

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS