dxdy=4x2(y−x)2dy=4x2(y−x)2dxdy−4x2(y−x)2dx=0
We know that ∂x∂F=(4x2(y−x)2)
⟹∫∂x∂F=∫(4x2(y−x)2)Taketheconstantout:∫a⋅f(x)dx=a⋅∫f(x)dx=4⋅∫(y−x)2x2dx4⋅∫y2x2−2yx3+x4dxApplytheSumRule:∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx=4(∫y2x2dx−∫2yx3dx+∫x4dx)=4(3y2x3−2yx4+5x5)+f′(y)dyd(4(3y2x3−2yx4+5x5))+f′(y)=4dyd(3y2x3−2yx4+5x5)+∫f′(y)=4(dyd(3y2x3)−dyd(2yx4)+dyd(5x5))+∫f′(y)=4(−2x4+32yx3)+∫f(y)F=4(−2x4+32yx3)+y
Comments