the time shifting property of Laplace transform:
"f(t-a)u(t-a)=L^{-1}\\{e^{-as}F(s)\\}, a>0" where u(t) is the Heaviside step function and
"F(s)=L\\{f(t)\\}" hence
"L^{-1}\\{e^{-s}\/\\sqrt{s}\\}=[a=1>0]=u(t-1)f(t-1)" where
"F(s)=\\frac{1}{\\sqrt{s}}=\\Big[for \\space p=-\\frac 1 2 \\Big]=\\frac{\\Gamma(p+1)}{\\Gamma(p+1) s^{p+1}}=\\frac{\\Gamma(\\frac 1 2)}{\\Gamma(\\frac 1 2) \\sqrt{s}}" The Gamma function is an extension of the normal factorial function and
"\\Gamma \\Big( \\frac 1 2 \\Big)=\\sqrt {\\pi}" for pth power of Laplace transform:
"L^{-1} \\Bigg \\{ \\frac{\\Gamma(p+1)}{s^{p+1}} \\Bigg \\}=[Re(p)>-1]=t^p" So
"f(t)=L^{-1} \\Bigg \\{ \\frac{\\Gamma(1\/2)}{\\Gamma(1\/2) \\sqrt{s}} \\Bigg \\}=\\frac{1}{\\sqrt {\\pi}}L^{-1} \\Bigg \\{ \\frac{\\Gamma(1\/2)}{ \\sqrt{s}} \\Bigg \\}=\\frac{1}{\\sqrt {\\pi t}}""L^{-1}\\{e^{-s}\/\\sqrt{s}\\}=u(t-1)f(t-1)=\\frac{u(t-1)}{\\sqrt {\\pi (t-1)}}" Answer: "L^{-1}\\{e^{-s}\/\\sqrt{s}\\}=\\frac{u(t-1)}{\\sqrt {\\pi (t-1)}}"
Comments
Leave a comment