the time shifting property of Laplace transform:
f ( t − a ) u ( t − a ) = L − 1 { e − a s F ( s ) } , a > 0 f(t-a)u(t-a)=L^{-1}\{e^{-as}F(s)\}, a>0 f ( t − a ) u ( t − a ) = L − 1 { e − a s F ( s )} , a > 0 where u(t) is the Heaviside step function and
F ( s ) = L { f ( t ) } F(s)=L\{f(t)\} F ( s ) = L { f ( t )} hence
L − 1 { e − s / s } = [ a = 1 > 0 ] = u ( t − 1 ) f ( t − 1 ) L^{-1}\{e^{-s}/\sqrt{s}\}=[a=1>0]=u(t-1)f(t-1) L − 1 { e − s / s } = [ a = 1 > 0 ] = u ( t − 1 ) f ( t − 1 ) where
F ( s ) = 1 s = [ f o r p = − 1 2 ] = Γ ( p + 1 ) Γ ( p + 1 ) s p + 1 = Γ ( 1 2 ) Γ ( 1 2 ) s F(s)=\frac{1}{\sqrt{s}}=\Big[for \space p=-\frac 1 2 \Big]=\frac{\Gamma(p+1)}{\Gamma(p+1) s^{p+1}}=\frac{\Gamma(\frac 1 2)}{\Gamma(\frac 1 2) \sqrt{s}} F ( s ) = s 1 = [ f or p = − 2 1 ] = Γ ( p + 1 ) s p + 1 Γ ( p + 1 ) = Γ ( 2 1 ) s Γ ( 2 1 ) The Gamma function is an extension of the normal factorial function and
Γ ( 1 2 ) = π \Gamma \Big( \frac 1 2 \Big)=\sqrt {\pi} Γ ( 2 1 ) = π for pth power of Laplace transform:
L − 1 { Γ ( p + 1 ) s p + 1 } = [ R e ( p ) > − 1 ] = t p L^{-1} \Bigg \{ \frac{\Gamma(p+1)}{s^{p+1}} \Bigg \}=[Re(p)>-1]=t^p L − 1 { s p + 1 Γ ( p + 1 ) } = [ R e ( p ) > − 1 ] = t p So
f ( t ) = L − 1 { Γ ( 1 / 2 ) Γ ( 1 / 2 ) s } = 1 π L − 1 { Γ ( 1 / 2 ) s } = 1 π t f(t)=L^{-1} \Bigg \{ \frac{\Gamma(1/2)}{\Gamma(1/2) \sqrt{s}} \Bigg \}=\frac{1}{\sqrt {\pi}}L^{-1} \Bigg \{ \frac{\Gamma(1/2)}{ \sqrt{s}} \Bigg \}=\frac{1}{\sqrt {\pi t}} f ( t ) = L − 1 { Γ ( 1/2 ) s Γ ( 1/2 ) } = π 1 L − 1 { s Γ ( 1/2 ) } = π t 1 L − 1 { e − s / s } = u ( t − 1 ) f ( t − 1 ) = u ( t − 1 ) π ( t − 1 ) L^{-1}\{e^{-s}/\sqrt{s}\}=u(t-1)f(t-1)=\frac{u(t-1)}{\sqrt {\pi (t-1)}} L − 1 { e − s / s } = u ( t − 1 ) f ( t − 1 ) = π ( t − 1 ) u ( t − 1 ) Answer : L − 1 { e − s / s } = u ( t − 1 ) π ( t − 1 ) L^{-1}\{e^{-s}/\sqrt{s}\}=\frac{u(t-1)}{\sqrt {\pi (t-1)}} L − 1 { e − s / s } = π ( t − 1 ) u ( t − 1 )
Comments