Calculate the (a) pressure (kPa) of the air leaving the re-heater
"\\frac{T_b}{T_a}=(\\frac{P_b}{P_a})^{\\frac{\\gamma-1}{\\gamma}}"
"\\frac{975}{300}=(\\frac{1089}{100})^{\\frac{\\gamma-1}{\\gamma}}"
finding gamma
"\\frac{975}{300}\\cdot \\:300=\\left(\\frac{1089}{100}\\right)^{\\frac{\\gamma-1}{\\gamma}}\\cdot \\:300"
"\\gamma=\\frac{\\ln \\left(\\frac{1089}{100}\\right)}{\\ln \\left(\\frac{1089}{325}\\right)}=1.97474"
"\\frac{975}{300}=(\\frac{P_C}{1089-100})^{\\frac{\\gamma-1}{\\gamma}}"
"\\frac{975}{300}=(\\frac{P_C}{1089-100})^{\\frac{1.97474-1}{1.97474}}"
"\\log\\frac{975}{300}=(\\frac{0.97474}{1.97474})\\log\\frac{P_c}{989}"
"1.056=\\log \np_c-\\log 989"
"\\ln log x=\\ln 4.0512"
"P_C=11251kP_a"
Comments
Leave a comment