Question #238040

1.    Given the utility function of the form: U (x, y) = 4x2 + 3xy + 6y2: maximize utility subject to the budget constraint: x + y = 56. Then find the utility maximizing level of output x and y?



1
Expert's answer
2021-09-16T10:30:44-0400
Lag=4x2+3xy+6y2λ(x+y56)Lag=4x^2+3xy+6y^2-\lambda(x+y-56)

ΔLagΔx=8x+3yλ\frac{\varDelta Lag}{\varDelta x}=8x+3y-\lambda

ΔLagΔy=3x+12yλ\frac{\varDelta Lag}{\varDelta y}=3x+12y-\lambda

y=1.8xy=1.8x

x=31x=31

y=56y=56


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS