(a) Let's calculate the TR function for each quantity:
"TR_0=100-10\\cdot0^2=\\$100,""TR_1=100-10\\cdot1^2=\\$90,""TR_2=100-10\\cdot2^2=\\$60,""TR_3=100-10\\cdot3^2=\\$10,""TR_4=100-10\\cdot4^2=-\\$60,""TR_5=100-10\\cdot5^2=-\\$150,""TR_6=100-10\\cdot6^2=-\\$260."
(b) Then, we can calculate the average revenue for each quantity:
"AR_1=\\dfrac{TR_1}{Q_1}=\\dfrac{\\$90}{2}=\\$45,""AR_2=\\dfrac{TR_2}{Q_2}=\\dfrac{\\$60}{3}=\\$20,""AR_3=\\dfrac{TR_3}{Q_3}=\\dfrac{\\$10}{3}=\\$3.3,""AR_4=\\dfrac{TR_4}{Q_4}=\\dfrac{-\\$60}{4}=-\\$15,""AR_5=\\dfrac{TR_5}{Q_5}=\\dfrac{-\\$150}{5}=-\\$30,""AR_6=\\dfrac{TR_6}{Q_6}=\\dfrac{-\\$260}{6}=-\\$45.3."c) In order to find MR we need to take derivative of TR with respect to Q:
"MR=\\dfrac{dTR}{dQ}=-20Q."
Let's calculate MR for each quantity:
"MR_1=\\dfrac{TR_1-TR_0}{Q_1-Q_0}=\\dfrac{\\$90-\\$100}{1-0}=-\\$10,""MR_2=\\dfrac{TR_2-TR_1}{Q_2-Q_1}=\\dfrac{\\$60-\\$90}{2-1}=-\\$30,""MR_3=\\dfrac{TR_3-TR_2}{Q_3-Q_2}=\\dfrac{\\$10-\\$60}{3-2}=-\\$50,""MR_4=\\dfrac{TR_4-TR_3}{Q_4-Q_3}=\\dfrac{-\\$60-\\$10}{4-3}=-\\$70,""MR_5=\\dfrac{TR_5-TR_4}{Q_5-Q_4}=\\dfrac{-\\$150-(-\\$60)}{5-4}=-\\$90,""MR_6=\\dfrac{TR_6-TR_5}{Q_6-Q_5}=\\dfrac{-\\$260-(-\\$150)}{6-5}=-\\$110."
Comments
Leave a comment