Question #99856
Max(min) f(x,y,z) = x^2+y^2+z^2
Subject to
X+2y+z=30
2x-y-3z= 10
Check for local second order condition
1
Expert's answer
2019-12-03T10:13:14-0500

Solution:


x=302yzx=30-2y-z


2(302yz)y3z=102(30-2y-z)-y-3z=10

604y2zy3z=1060-4y-2z-y-3z=10

505y5z=050-5y-5z=0

10yz=010-y-z=0

y=10zy=10-z

x=302×(10z)zx=30-2\times (10-z)-z

x=3020+2zzx=30-20+2z-z


x=10+zx=10+z

f(x;y;z)f(z)f(x;y;z)\to f(z)


f(z)=(10+z)2+(10z)2+z2f(z)=(10+z)^2+(10-z)^2+z^2


f(z)=100+20z+z2+10020z+z2+z2f(z)=100+20z+z^2+100-20z+z^2+z^2


f(z)=3z2+200f(z)=3z^2+200

f(z)=6zf'(z)=6z

6z=0;z=06z=0; z=0

With this value, a minimum of function is achieved.



x=10;y=10x=10; y=10

f(x;y;z)=102+102+02=200f(x;y;z)=10^2+10^2+0^2=200

Answer: 200, minimum


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS