Solution:
x=30−2y−z
2(30−2y−z)−y−3z=10
60−4y−2z−y−3z=10
50−5y−5z=0
10−y−z=0
y=10−z
x=30−2×(10−z)−z
x=30−20+2z−z
x=10+z
f(x;y;z)→f(z)
f(z)=(10+z)2+(10−z)2+z2
f(z)=100+20z+z2+100−20z+z2+z2
f(z)=3z2+200
f′(z)=6z
6z=0;z=0 With this value, a minimum of function is achieved.
x=10;y=10
f(x;y;z)=102+102+02=200 Answer: 200, minimum
Comments