u(x,y) = 32x^0.5 + y, MUx = 16x^(-0.5), MUy = 1.
In equilibrium MUx/Px = MUy/Py and the budget constraint is Px*x + Py*y = I.
So, 16x^(-0.5)/Px = 1/Py,
16/(Px*x^0.5) = 1/Py,
Px*x^0.5 = 16Py,
x^0.5 = 16Py/Px,
x = 256Py^2/Px^2 - the demand function for x.
As Px*x + Py*y = I, then:
Px*x + Px*x^0.5*y/16 = I,
y = 16*(I - Px*x)/(Px*x^0.5) - the demand function for y.
Comments
Leave a comment