Given the following monotonically transformed utility function faced by the consumer
U(X1X2) = X_1^0.5 X_2^0.5
The price of good X1 is P1 and the price of good X2 is P2.
Derive the optimal demand (Marshallian demand) function for X1 and for X2.
1
Expert's answer
2015-03-20T10:45:47-0400
U(X1X2) = X1^0.5 X2^0.5 The price of good X1 is P1 and the price of good X2 is P2. Marshallian demand (dX1) is a function of the price of X1, the price of X2 (assuming two goods) and the level of income or wealth (m): X*=dX1(PX1, PX2, m) Optimal demand (Marshallian demand) function for X1 and for X2 will be: X = (0.5I/P1, 0.5I/P2)
Numbers and figures are an essential part of our world, necessary for almost everything we do every day. As important…
APPROVED BY CLIENTS
"assignmentexpert.com" is professional group of people in Math subjects! They did assignments in very high level of mathematical modelling in the best quality. Thanks a lot
Comments
Leave a comment