Question #319998

For each of the following production functions, determine whether returns to scale are decreasing, constant, or increasing,


a. Q = 2K + 3L + KL

b. Q = 20K0.6 L0.5

c. Q = 100 + 3K + 2L

d. Q = 5K0.459 L0.541

e. Q = 5K0.37 L0.56

f. Q = K/L


1
Expert's answer
2022-03-29T12:13:03-0400

Basically, the returns to scale refers to how much output changes given a proportional change in all inputs, where all the inputs change by the same factor.

To obtain the next output, we shall multiply all our functions by a factor z


a. Q = 2K + 3L + KL


Let𝑄0=𝐹(𝐾,𝐿)=2𝐾+3𝐿+𝐾𝐿Let 𝑄_{0}=𝐹(𝐾,𝐿)=2𝐾+3𝐿+𝐾𝐿


multiply it by factor 𝑧 and call it 𝑄1

𝑄1=𝐹(𝑧𝐾,𝑧𝐿)=2(𝑧𝐾)+3(𝑧𝐿)+(𝑧𝐾)(𝑧𝐿)=𝑧(2𝐾+3𝐿+𝑧𝐾𝐿)𝑄1=𝐹(𝑧𝐾,𝑧𝐿)=2(𝑧𝐾)+3(𝑧𝐿)+(𝑧𝐾)(𝑧𝐿)=𝑧(2𝐾+3𝐿+𝑧𝐾𝐿)

𝑧(2𝐾+3𝐿+𝑧𝐾𝐿)>𝑧(2𝐾+3𝐿+𝐾𝐿)𝑧(2𝐾+3𝐿+𝑧𝐾𝐿)>𝑧(2𝐾+3𝐿+𝐾𝐿)

2𝐾+3𝐿+𝑧𝐾𝐿>2𝐾+3𝐿+𝐾𝐿2𝐾+3𝐿+𝑧𝐾𝐿>2𝐾+3𝐿+𝐾𝐿

𝑧𝐾𝐿>𝐾𝐿𝑧𝐾𝐿>𝐾𝐿

𝑧>1.𝑧>1.

This indicates increasing returns to scale. 


b. Q = 20K0.6 L0.5

𝑄1=𝐹(𝑧𝐾,𝑧𝐿)=20(𝑧𝐾)0.6(𝑧𝐿)0.5=𝑧0.6𝑧0.520𝐾0.6𝐿0.5=𝑧1.1𝑄0𝑄1=𝐹(𝑧𝐾,𝑧𝐿)=20(𝑧𝐾)^{0.6}(𝑧𝐿)^{0.5}=𝑧^{0.6}𝑧^{0.5}20𝐾^{0.6}𝐿^{0.5}=𝑧^{1.1}𝑄_{0 }

𝐹(𝑧𝐾,𝑧𝐿)>𝑧𝐹(𝐾,𝐿).𝐹(𝑧𝐾,𝑧𝐿)> 𝑧𝐹(𝐾,𝐿).

This function expresses increasing returns to scale


c. Q = 100 + 3K + 2L

𝑄1=𝐹(𝑧𝐾,𝑧𝐿)=100+3(𝑧𝐾)+2(𝑧𝐿)𝑄1=𝐹(𝑧𝐾,𝑧𝐿)=100+3(𝑧𝐾)+2(𝑧𝐿)

In this case;

𝐹(𝑧𝐾,𝑧𝐿)<𝑧𝐹(𝐾,𝐿)𝐹(𝑧𝐾,𝑧𝐿)<𝑧𝐹(𝐾,𝐿)

100+3(𝑧𝐾)+2(𝑧𝐿)<100𝑧+3(𝑧𝐾)+2(𝑧𝐿)100+3(𝑧𝐾)+2(𝑧𝐿)<100𝑧+3(𝑧𝐾)+2(𝑧𝐿)  This production function represents decreasing returns to scale.


d. Q = 5K0.459 L0.541

Let 𝑄0=𝐹(𝐾,𝐿)=5πΎπ‘ŽπΏπ‘π‘„_{0}=𝐹(𝐾,𝐿)=5𝐾^{π‘Ž}𝐿^{𝑏} , where π‘Ž+𝑏=1, be the initial production function, then after multiplying it by factor 𝑧 we obtain: 

𝑄1=𝐹(𝑧𝐾,𝑧𝐿)=5(𝑧𝐾)π‘Ž(𝑧𝐿)𝑏=π‘§π‘Žπ‘§π‘5πΎπ‘ŽπΏπ‘=π‘§π‘Ž+𝑏𝑄0=𝑧𝑄0𝑄_{1}=𝐹(𝑧𝐾,𝑧𝐿)=5(𝑧𝐾)^π‘Ž(𝑧𝐿)^𝑏=𝑧^π‘Žπ‘§^𝑏5𝐾^π‘ŽπΏ^𝑏=𝑧^{π‘Ž+𝑏}𝑄_{0}=𝑧𝑄_{0}

𝐹(𝑧𝐾,𝑧𝐿)=𝑧𝐹(𝐾,𝐿).𝐹(𝑧𝐾,𝑧𝐿)=𝑧𝐹(𝐾,𝐿).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS