Basically, the returns to scale refers to how much output changes given a proportional change in all inputs, where all the inputs change by the same factor.
To obtain the next output, we shall multiply all our functions by a factor z
a. Q = 2K + 3L + KL
LetQ0β=F(K,L)=2K+3L+KL
multiply it by factor π§ and call it π1
Q1=F(zK,zL)=2(zK)+3(zL)+(zK)(zL)=z(2K+3L+zKL)
z(2K+3L+zKL)>z(2K+3L+KL)
2K+3L+zKL>2K+3L+KL
zKL>KL
z>1.
This indicates increasing returns to scale.
b. Q = 20K0.6 L0.5
Q1=F(zK,zL)=20(zK)0.6(zL)0.5=z0.6z0.520K0.6L0.5=z1.1Q0β
F(zK,zL)>zF(K,L).
This function expresses increasing returns to scale
c. Q = 100 + 3K + 2L
Q1=F(zK,zL)=100+3(zK)+2(zL)
In this case;
F(zK,zL)<zF(K,L)
100+3(zK)+2(zL)<100z+3(zK)+2(zL) This production function represents decreasing returns to scale.
d. Q = 5K0.459 L0.541
Let Q0β=F(K,L)=5KaLb , where π+π=1, be the initial production function, then after multiplying it by factor π§ we obtain:
Q1β=F(zK,zL)=5(zK)a(zL)b=zazb5KaLb=za+bQ0β=zQ0β
F(zK,zL)=zF(K,L).
Comments