Midland Power and Light is the only seller of electricity in the area. The demand function facing the firm is Q = 250 – 0.5P
Where Q is quantity demanded and P is price. The firm total cost function is
TC = 100 – 10Q + 0.5Q, and the marginal cost is MC = -10 + Q
a/ Determine the profit-maximizing price and output rate for Midland.
b/ Determine the cost per unit, profit per unit, and total profit.
a)"pure" monopolist maximizes profit under the condition that MR = MC
MR=MC=-10+Q
"P=\\frac{250-Q}{0.5}=500-0.5Q"
500-0.5Q=-10+Q
510=1.5Q
Q=340
"P=500-0.5times340=500-170=330"
"Profit=340\\times330-(100-100\\times340+0.5\\times340)=112200-(100-34000+170)=145930"
b)"profit per unit=\\frac{145930}{340}=429.21"
"cost per unit=\\frac{100-10\\times340+0.5\\times340}{340}=\\frac{100-3400+170}{340}=\\frac{-3130}{340}=-9.21"
Comments
Leave a comment