Question #312264

Given the Demand function Q1 = 100-P1+0.75P2-0.25P3+0.005Y Calculate the price, income and







cross-price elasticity of demand and interpret the result respectively at P1=8, P2=15, P3=30 and







also Y=8,000 �

1
Expert's answer
2022-03-16T11:09:55-0400

Given that

Qd=100P1+0.75P20.25P3+0.005YQd=100-P_1+0.75P_2-0.25P_3+0.005Y

δQδP1=1\frac{\delta{Q}}{\delta{P_1}}=-1

Q=1008+0.75(15)0.25(30)+0.005(8000)Q=100-8+0.75(15)-0.25(30)+0.005(8000)

P

Q=135.75Q=135.75

ϵ=δQδP1P1Q\epsilon =\frac{\delta{Q}}{\delta{P_1}}\frac{P_1}{Q}

ϵ=1(8135.75)\epsilon=-1(\frac{8}{135.75})

ϵP1=0.06\epsilon_{P_1}=- 0.06

A 1% increase in price will bring about a 6% change in the quantity of P1

ϵP2=δQδP2P2Q\epsilon_{P_2}=\frac{\delta{Q}}{\delta{P_2}}\frac{P_2}{Q}

ϵP2=0.75(15135.75)\epsilon_{P_2}=0.75(\frac{15}{135.75})

ϵP2=0.08\epsilon_{P_2}=0.08

P2 is a substitute good.

ϵP3=δQδP3P3Q\epsilon_{P_3}=\frac{\delta{Q}}{\delta{P_3}}\frac{P_3}{Q}

ϵP3=0.25(30135.75)\epsilon_{P_3}=-0.25(\frac{30}{135.75})

ϵP3=0.06\epsilon_{P_3}=-0.06

P3 is a complementary good

ϵY=δQδYYQ\epsilon_{Y}=\frac{\delta{Q}}{\delta{Y}}\frac{Y}{Q}

ϵY=0.005(8000135.75)\epsilon_{Y}=0.005(\frac{8000}{135.75})

ϵY=0.29\epsilon_{Y}=0.29

Since ϵY<1\epsilon_{Y}<1 , the good is income inelastic.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS