Suppose the production function of a firm is given ×=0.5lthe power of 1/2*k the power of 1/2 price of labor and capital are given $5 and$10 respectively,and the firm has constant cost out lay of$600
1; find profit maximize level of L and K to employee
2; find MRTS of L to K at optimum
A)
"x=0.5l^{\\frac{1}{2}}k^{\\frac{1}{2}}"
Given that Pl=$5 and Pk=$10 and C=$600
"X=0.5l^{\\frac{1}{2}}k^{\\frac{1}{2}}+\\lambda(60-5l-10k)"
"X_l=0.25l^{-\\frac{1}{2}}k^{\\frac{1}{2}}-5\\lambda=0" .......1)
"X_k=0.25l^{\\frac{1}{2}}k^{-\\frac{1}{2}}-10\\lambda=0" .....2)
"X_{\\lambda}=60-5l-10k=0" .......3)
"\\frac{0.25l^{-\\frac{1}{2}}k^{\\frac{1}{2}}}{0.25l^{\\frac{1}{2}}k^{-\\frac{1}{2}}}=\\frac{5}{10}"
"\\frac{k}{l}=\\frac{5}{10}"
"l=2k"
Substituting l in (3)
"600-5(2k)-10k=0"
"600-20k=0"
"\\bar{k}=30"
"\\bar{l}=2(30)=60"
B)"MRTS_{lk}=\\frac{-k}{l}"
At the optimum,
"MRTS_{lk}=\\frac{-30}{60}=\\frac{-1}{2}"
Comments
Leave a comment