Question #307880

the utility function for a consumer utility is U=30Q1 1/2 Q2 1/2. if the price per unit of Q1 =shs 10 and shs 5 per unit of Q2 determine the quantities the consumer should maximize utility if the consumer budgeted shs 350


1
Expert's answer
2022-03-08T09:48:51-0500

The utility function for a consumer utility is U=30Q112Q212U = 30Q_1^{\frac{1}{2}} Q_2^{\frac{1}{2}}. if the price per unit of Q1 =shs 10 and shs 5 per unit of Q2. Determine the quantities the consumer should maximize utility if the consumer budgeted shs 350.


U=30Q112Q212U = 30Q_1^{\frac{1}{2}} Q_2^{\frac{1}{2}}

The budget line is given by:


350=10Q1+5Q2350=10Q_1+5Q_2


When the bundle is optimum, the slope of the budget line matches the slope of the utility function.

Slope of BL=price Of Q2price of Q1=210=0.5Slope\ of\ BL=\frac{-price\ Of\ Q_2}{price\ of\ Q_1}=\frac{-2}{10}=-0 .5


Slope of U=MUQ1MUQ2Slope\ of\ U =\frac{-MUQ_1}{MUQ_2}

MUQ1=15Q2MUQ_1=15Q_2

MUQ2=15Q1MUQ_2=15Q_1

Slope of U=15Q115Q2Slope\ of\ U=\frac{-15Q_1}{15Q_2}


Taking the budget line's slope and applying it to the slope of U:

15Q115Q2=0.5\frac{-15Q_1}{15Q_2}=-0.5

15Q1=7.5Q2-15Q_1=-7.5Q_2

Q1=0.52Q2Q_1=0.52Q_2


We may achieve the following results by substituting Q1 in the budget line:

10×(0.5Q2)+5Q2=35010×(0.5Q_2)+5Q_2=350

10Q2=35010Q_2=350

Q2=35Q_2=35

Q1=0.5Q2Q_1=0.5Q_2

Q1=17.5Q_1=17.5


Therefore, to maximize utility, Q1=17.5Q_1 ​= 17.5 and Q2=35Q_2=35




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS