At equilibrium,
4 , 500 − 15 Q 2 = 5 Q 2 + 2 , 500 4,500-15Q^2=5Q^2+2,500 4 , 500 − 15 Q 2 = 5 Q 2 + 2 , 500
4 , 500 − 2 , 500 = 5 Q 2 + 15 Q 2 4,500-2,500=5Q^2+15Q^2 4 , 500 − 2 , 500 = 5 Q 2 + 15 Q 2
2 , 000 = 20 Q 2 2,000=20Q^2 2 , 000 = 20 Q 2
2 , 000 20 = Q 2 \frac {2,000}{20} =Q^2 20 2 , 000 = Q 2
1 00 = Q 2 \sqrt100=\sqrt Q^2 1 00 = Q 2
Q = 10 Q=10 Q = 10
Price is calculated below
5 ( 10 ) 2 + 2 , 500 5(10)^2+2,500 5 ( 10 ) 2 + 2 , 500
500 + 2 , 500 = 3 , 000 500+2,500= 3,000 500 + 2 , 500 = 3 , 000
Consumer surplus is calculated as
∫ 0 q d ( Q ) d Q − P × Q ∫_0^qd(Q)dQ−P\times Q ∫ 0 q d ( Q ) d Q − P × Q
C S = ∫ 0 10 4 , 500 − 15 Q 2 d Q − 3 , 000 × 10 CS=∫_0 ^{10} 4,500−15Q^2dQ−{3,000\times 10} CS = ∫ 0 10 4 , 500 − 15 Q 2 d Q − 3 , 000 × 10
= [ 4 , 500 Q − 15 Q 3 3 ] − 30 , 000 =[4,500 Q−\frac{15Q^3}{3}]−30,000 = [ 4 , 500 Q − 3 15 Q 3 ] − 30 , 000
Since Q= 10;
= [ 45 , 000 − 5 , 000 ] − 30 , 000 =[45,000−5,000]−30,000 = [ 45 , 000 − 5 , 000 ] − 30 , 000
= $ 10 , 000 =\$ 10,000 = $10 , 000
producer surplus is calculated as;
P × Q − ∫ 0 q s ( Q ) d Q . P\times Q−∫_0^q s(Q)dQ. P × Q − ∫ 0 q s ( Q ) d Q .
P S = 3 , 000 × 10 − ∫ 0 10 5 Q 2 + 2 , 500 d Q PS={ 3,000\times 10}−∫_0^{10}5Q^2 +2,500 dQ PS = 3 , 000 × 10 − ∫ 0 10 5 Q 2 + 2 , 500 d Q
= 30 , 000 − ( 15 Q 3 3 + 2 , 500 Q ) =30,000−(\frac{15Q^3}{3}+2,500Q) = 30 , 000 − ( 3 15 Q 3 + 2 , 500 Q )
Since Q =10
P S = 30 , 000 − 5 , 000 − 2 , 500 PS=30,000−{5,000−2,500} PS = 30 , 000 − 5 , 000 − 2 , 500
= $ 0 =\$ 0 = $0
Comments