suppose that the demand and total cost function of a monoplist are P=24-3Q and C=Q²+8Q respectively, finde the optimum quality ,price and profit on these levels.
At optimal point, marginal revenue is equal to marginal cost.
MR=MC;
"Revenue=Price\\times Demand"
"Revenue=(24-3Q)\\times Q=24Q-3Q ^2"
"MR=24-6Q"
Cost function
C=Q²+8Q; MC=2Q+8
So, equate MC and MR to find optimal quantity and price.
MC=MR; 2Q+8="24-6Q"
8 Q=16; Q=2
But Price =24-3Q=24-6=18
Profit = Revenue- Cost
"Profit=(24Q-3Q ^2)-(Q ^2+8Q);"
"Profit=(24\\times2-3\\times2 ^2)-(2 ^2+8\\times2)=16"
Optimal quantity=2 units
Optimal price=18
Optimal profit=16.
Comments
Leave a comment