Production function of a firm is given as X=0.5 L ^0.5 K^0.5 price of labor and capital are 5$ and 10$ respectively the firm has a constant cost out lay of $600 find the combination of labor and capital that maximize the farm output and the maximum outputs?
MPL=K0.54L0.5MPL=\frac{K^{0.5}}{4L^{0.5}}MPL=4L0.5K0.5
MPK=L0.54K0.5MPK=\frac{L^{0.5}}{4K^{0.5}}MPK=4K0.5L0.5
MRTS=MPLMPKMRTS = \frac{MPL} {MPK}MRTS=MPKMPL
MRTS=K0.54L0.5L0.54K0.5MRTS = \frac{ \frac{K^{0.5}}{4L^{0.5}}}{\frac{L^{0.5}}{4K^{0.5}}}MRTS=4K0.5L0.54L0.5K0.5
MRTS=KLMRTS = \frac{K}{L}MRTS=LK
KL=105\frac{K}{L}= \frac{10}{5}LK=510
10L=5K
2L=K
600=0.5L0.5K0.5600=0.5L^{0.5} K^{0.5}600=0.5L0.5K0.5
600=0.5L0.5(2L)0.5600=0.5L^{0.5} (2L)^{0.5}600=0.5L0.5(2L)0.5
1200=L0.5L0.520.51200=L^{0.5}L^{0.5}2^{0.5}1200=L0.5L0.520.5
1200=(2)0.5L1200=(2)^{0.5}L1200=(2)0.5L
L=848.53
K=1697.06
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments