Find the elasticity of substitution for the following production function:Q=√LK where Q represent quantity of output produced L and K represent labour and capital used.
"Q=\u221aLK" this is the same as "Q=L^{\\frac{1}{2}}K^{\\frac{1}{2}}"
"Elasticity Of Substitution=\\frac{input Ratio}{MRS}"
"Inputs Ratio=\\frac{K^{\\frac{1}{2}}}{L^{\\frac{1}{2}}}"
"MRS=\\frac{-\u2206L}{\u2206K}"
"\u2206L=\\frac{1}{2}(K^{\\frac{1}{2}})"
"\u2206K=\\frac{1}{2}(L^{\\frac{1}{2}})"
"MRS=\\frac{(\\frac{1}{2}(K^{\\frac{1}{2}})}{(\\frac{1}{2}(L^\\frac{1}{2})}=\\frac{-K^\\frac{1}{2}}{L^\\frac{1}{2}}"
Therefore:
"E.S=\\frac{K^{\\frac{1}{2}}}{L^{\\frac{1}{2}}}\u00f7\\frac{-K^{\\frac{1}{2}}}{L^{\\frac{1}{2}}}"
"=\\frac{K^{\\frac{1}{2}}}{L^{\\frac{1}{2}}}\u00d7\\frac{L^{\\frac{1}{2}}}{-K^{\\frac{1}{2}}}=-1"
Comments
Leave a comment