Find the elasticity of substitution for the following production function:Q=√LK where Q represent quantity of output produced L and K represent labour and capital used.
Q=√LKQ=√LKQ=√LK this is the same as Q=L12K12Q=L^{\frac{1}{2}}K^{\frac{1}{2}}Q=L21K21
ElasticityOfSubstitution=inputRatioMRSElasticity Of Substitution=\frac{input Ratio}{MRS}ElasticityOfSubstitution=MRSinputRatio
InputsRatio=K12L12Inputs Ratio=\frac{K^{\frac{1}{2}}}{L^{\frac{1}{2}}}InputsRatio=L21K21
MRS=−∆L∆KMRS=\frac{-∆L}{∆K}MRS=∆K−∆L
∆L=12(K12)∆L=\frac{1}{2}(K^{\frac{1}{2}})∆L=21(K21)
∆K=12(L12)∆K=\frac{1}{2}(L^{\frac{1}{2}})∆K=21(L21)
MRS=(12(K12)(12(L12)=−K12L12MRS=\frac{(\frac{1}{2}(K^{\frac{1}{2}})}{(\frac{1}{2}(L^\frac{1}{2})}=\frac{-K^\frac{1}{2}}{L^\frac{1}{2}}MRS=(21(L21)(21(K21)=L21−K21
Therefore:
E.S=K12L12÷−K12L12E.S=\frac{K^{\frac{1}{2}}}{L^{\frac{1}{2}}}÷\frac{-K^{\frac{1}{2}}}{L^{\frac{1}{2}}}E.S=L21K21÷L21−K21
=K12L12×L12−K12=−1=\frac{K^{\frac{1}{2}}}{L^{\frac{1}{2}}}×\frac{L^{\frac{1}{2}}}{-K^{\frac{1}{2}}}=-1=L21K21×−K21L21=−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments