Question #294231

Find the elasticity of substitution for the following production function:Q=√LK where Q represent quantity of output produced L and K represent labour and capital used.

1
Expert's answer
2022-02-09T11:04:21-0500

Q=LKQ=√LK this is the same as Q=L12K12Q=L^{\frac{1}{2}}K^{\frac{1}{2}}

ElasticityOfSubstitution=inputRatioMRSElasticity Of Substitution=\frac{input Ratio}{MRS}

InputsRatio=K12L12Inputs Ratio=\frac{K^{\frac{1}{2}}}{L^{\frac{1}{2}}}

MRS=LKMRS=\frac{-∆L}{∆K}

L=12(K12)∆L=\frac{1}{2}(K^{\frac{1}{2}})

K=12(L12)∆K=\frac{1}{2}(L^{\frac{1}{2}})

MRS=(12(K12)(12(L12)=K12L12MRS=\frac{(\frac{1}{2}(K^{\frac{1}{2}})}{(\frac{1}{2}(L^\frac{1}{2})}=\frac{-K^\frac{1}{2}}{L^\frac{1}{2}}

Therefore:

E.S=K12L12÷K12L12E.S=\frac{K^{\frac{1}{2}}}{L^{\frac{1}{2}}}÷\frac{-K^{\frac{1}{2}}}{L^{\frac{1}{2}}}

=K12L12×L12K12=1=\frac{K^{\frac{1}{2}}}{L^{\frac{1}{2}}}×\frac{L^{\frac{1}{2}}}{-K^{\frac{1}{2}}}=-1







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS