A household consumes only apples (A) and bananas (B). The preference of the house hold isÂ
given by the utility function U(A, B) = A0.8B
0.2. If the income of the household is $20 andÂ
the price of apple (A) and banana (B) is $4 and $2, respectively, thenÂ
a) Find the optimal consumption of A and B
b) Show the equilibrium condition graphically
"U(A,B)= A^{0.8}B^{0.2}"
I= 20
P"_A= 4"
P"_B= 2"
"\\frac{Mu_A}{Mu_B}=\\frac{P_A}{P_B}"
"=\\frac{0.8A^{-0.2}B^{0.2}}{0.2A^{0.8}B^{-0.8}}= \\frac{4}{2}"
"=\\frac{0.8B^{0.2}B^{0.8}}{0.2A^{0.8}A^{0.2}}= \\frac{4}{2}"
"=\\frac{0.8A}{0.2A}=\\frac{4}{2}"
A=2B
B= 0.5A
From the Budget Equation
4A+2B= 20
Replace A= 2B
4(2B)+2B= 20
10B= 20
B"^*" = 2
Replace B= 0.5B
4A+2(0.5)= 20
4A+A=20
A"^*" = 4
The equilibrium condition can be shown in the diagram below.
Comments
Leave a comment