Given utility function: U(x, y) = X1/3Y2/3, Px = 2, Py = 5 and M = 400, find:
a. The demand equation for X and Y.
b. The utility maximizing levels of X and Y.
c. The maximum utility.
d. The MRSx, y at the optimum level.
U="(X^ \\frac {1}{3}Y^\\frac{2}{3})"
I= 400
"_x= 2"
"P_y= 5"
a)Demand functions
For utility maxmization
"\\frac{\\frac{1}{3}X^\\frac{-2}{3}Y^\\frac{2}{3}}{\\frac{2}{3}X^\\frac{1}{3}Y^\\frac{-1}{3}}=\\frac {P_x}{P_y}"
"\\frac{\\frac {1}{3}Y}{\\frac{2}{3}X}=\\frac {P_x}{P_y}"
"\\frac{2}{3}P_xX=\\frac{1}{3}P_yY"
X= "\\frac{P_yY}{2P_x}"
"2P_xX=P_yY"
"Y=\\frac{2P_xX}{P_y}"
Plug into the budget constraint
m= "P_xX+P_yY"
m="P_x(\\frac{P_yY}{2P_x})+P_yY"
2m="3P_yY"
"Y^*= \\frac{2m}{3P_y}"
m="P_xX+P_yY"
"m=P_xX+P_Y(\\frac{2P_xX}{P_y})"
m"=P_xX+2P_xX"
X*="\\frac{m}{3P_x}"
b) Utility Maximizing levels
"Y^*= \\frac{2\\times 400}{3\\times 5}=\\frac{800}{15}= 53.33"
c) Maximum utility of consuming the two goods
= 66.3=120
d) MRS
"MRS_(xy)= \\frac{Mu_x}{Mu_y}= \\frac{\\frac{1}{3}X^\\frac{-2}{3}Y^\\frac{2}{3}}{\\frac{2}{3}X^\\frac{1}{3}Y^\\frac{-1}{3}}"
"=\\frac{\\frac{1}{3}Y}{\\frac{2}{3}X}=\\frac{Y}{2X}="
"=\\frac{53.33}{66.67\\times 2}=\\frac{53.33}{134.34}=0.4"
Comments
This was very helpful thank you
Leave a comment