Question #289121

Suppose a consumer’s preference (utility function) is represented by: 0.25 0.75 U  X Y ; where U is total utility

of the consumer derived by consuming commodity X and Y. The price of X is Birr 4 while the price of Y is

Birr 2, and the consumer’s money income is Birr 1600. Then:

a. write the budget line equation and determine its slope

b. determine the marginal utilities for both commodities

c. calculate the optimal consumption bundle mathematically

d. calculate the income shares of both commodities


1
Expert's answer
2022-01-25T08:30:25-0500

a) U(x,Y) =0.25, 0.75


X=birr 4


Y= birr2

Income, I=1600I= 1600

Budget line equationI=PrX+PrYwherePr=priceI=PrX+PrY where Pr=price

1600=4X+2Y1600=4X+2Y

U=X0.25Y0.75U=X^{0.25}Y^{0.75}

MuX,dudx=0.25X0.251Y0.75MuX,\frac{du}{dx}=0.25X^{0.25-1}Y^{0.75}

MuY,dudy=0.75X0.25Y0.751MuY,\frac{du}{dy}=0.75X^{0.25}Y^{0.75-1}

MuX=0.25X0.75Y0.75MuX=0.25X^{-0.75}Y^{0.75}

MuX/PX=MuY/PYMuX/PX= MuY/PY

0.25X0.75Y0.754=\frac{0.25X^{-0.75}Y^{0.75}}{4}= 0.75X0.25Y0.252\frac{0.75X^{0.25}Y^{-0.25}}{2}

Multiply both sides by 4,

0.25X0.75Y0.75=1.5X0.25Y0.250.25X^{-0.75}Y^{0.75}=1.5X^{0.25}Y^{-0.25}

X0.75Y0.75=6X0.25Y0.25X^{-0.75}Y^{0.75}=6X^{0.25}Y^{-0.25}

X0.750.25=6Y0.250.75X^{-0.75-0.25}=6Y^{0.25-0.75}

X1=6Y1X^{-1}=6Y^{-1}

1X=6Y\frac{1}{X}=\frac{6}{Y}

X=Y6X=\frac{Y}{6}

Substitute y/6 for x in the budget line equation

1600=4X+2Y1600=4X+2Y

1600=4Y6+2Y1600=4\frac{Y}{6} +2Y

1600=2Y3+2Y1600=2\frac{Y}{3}+2Y

1600=(2y+6y)/31600=(2y+6y)/3

4800=8Y,Y=6004800=8Y, Y=600

Forx,1600=4x+2(600)For x, 1600= 4x+2(600)

1600=4x+12001600=4x+1200

4x=160012004x=1600-1200

4x=4004x=400

x=100x=100

c) Optimal bundle

p1= 4, p2= 2, m(income) =1600

MRS=X/Y=P1/P2=4/2=2MRS= -X/Y= -P1/P2 =-4/2=-2

X=2Y......(i)X=2Y......(i)

2X+Y=1600....(ii)2X+Y=1600....(ii)

5Y=16005Y=1600

Y=1600/5=320Y=1600/5= 320

X=2YX=2Y

X=2(320)=640X=2(320)=640

d)IncomesharesforX=dQxdQmI/Xd)Income shares for X=\frac{dQx}{dQm}I/X

=4(1600/100)=64=4(1600/100)=64

IncomesharesforY=dQydQmI/YIncome shares for Y=\frac{dQy}{dQm}I/Y

=2(1600/600)=5.3=2(1600/600)=5.3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS