Suppose that the consumer’s utility function is given by 1/ 2 1/ 4 U  10X Y . If price of good X and Y are 4 and 2
respectively and income constraint is Birr 100.
a. The demand equation for X and Y.
b. The utility maximizing levels of X and Y.
c. The maximum utility.
d. Compute both X ,Y Y ,X MRS and MRS . Is there any difference between the two?
"U(10X^\\frac {1}{2}Y^\\frac{1}{4})"
"P_x=4"
"P_y=2"
Income= 100
a)
"\\frac{Mu_x}{Mu_y}=\\frac{P_x}{P_y}"
"Mu_x=5x^\\frac{-1}{2}Y^\\frac{1}{4}"
"Mu_y=2.5x^\\frac{1}{2}Y^\\frac{-3}{4}"
"\\frac{5x^\\frac{-1}{2}Y^\\frac{1}{4}}{2.5x^\\frac{1}{2}Y^\\frac{-3}{4}}=\\frac{P_y}{P_x}"
"\\frac{5Y}{2.5X}=\\frac{P_x}{P_y}"
"Y=\\frac{2.5XP_x}{5P_y}"
="\\frac{0.5XP_x}{P_y}" ...........(i)
"X=\\frac{5P_yY}{2.5P_x}"
"X=\\frac{2P_y}{P_x}" .........(i
"100=P_x(\\frac{2P_yY}{P_x})+P_yY"
"100=2P_yY+P_yY"
"100=P_yY(2+1)"
"P_yY=\\frac{100}{3}"
"Y^*=\\frac{100}{3P_y}...... Demand function for Y"
"100=P_xX+P_y(\\frac{0.5P_xX}{P_y})"
"P_xX=\\frac{100}{1.5}"
"X^*=\\frac{100}{1.5P_x}".......Demand function of X
b) Maximizing Levels of X and Y
"\\frac{5x^\\frac{-1}{2}Y^\\frac{1}{4}}{2.5x^\\frac{1}{2}Y^\\frac{-3}{4}}=\\frac{4}{2}"
"\\frac{5Y}{2.5X}=\\frac{4}{2}"
Y=X
"P_x\\times X= P_y\\times Y= m"
"4Y+2Y=100"
"Y=\\frac{100}{6}=\\frac{50}3"
X=Â "\\frac{50}3"
c) Maximum Utility=Â "\\frac {50}{3}+\\frac{50}{3}=\\frac{100}{3}=33.33"
d) Marginal rate of substitution of the X and Y
"MRS_{x_y}= \\frac{\\delta U}{(\\delta_x\\delta_y)}"
"MRS_{x_y}= \\frac{0.125}{5\\times 2.5}"Â =0.01
"MRS_{y_x}= \\frac{0.125}{2.5\\times 5}"Â =0.01
There is no difference in the MRS
Comments
Leave a comment