Question #288341

Assuming that the equation f(Q, P1, P2, Y) = 10P1Q1 + 5Q1 - 2P2 - 4Y -18 =0


defines an implicit demand function Q1 = Q1(P1, P2, Y), find own price elasticity , cross elasticity and income elasticity at a point (P1, P2, Y) = (2, 1, 20)

1
Expert's answer
2022-01-23T15:55:57-0500

f(Q1P1P2,Y)=10P1Q1+5Q12P24Y18f(Q_1P_1P_2,Y)= 10P_1Q_1+5Q_1-2P_2-4Y-18


Where; (P1, P2, Y) = (2, 1, 20)


Q1=2P2+4Y+1810P1+5Q_1= \frac{2P_2+4Y+18}{10P_1+5} =4


OwnPriceElasticity=ΔQΔP×pQOwn Price Elasticity=\frac{\Delta Q}{\Delta P}\times \frac{p}{Q}

=ΔQΔP1=10×PQ=\frac{\Delta Q}{\Delta P_1}=10\times \frac{P}{Q}


10×24=10\times \frac{2}{4}=5

OwnPriceElasticity=ΔQΔP2×p2QOwn Price Elasticity=\frac{\Delta Q}{\Delta P_2}\times \frac{p_2}{Q}


Cross elasticity= 14×2=24=0.5\frac{1}{4}\times -2= \frac{-2}{4}= -0.5


IncomeElasticity=ΔQΔI×IQIncome Elasticity =\frac{\Delta Q}{\Delta I}\times \frac{I}{Q}

=44×20=20=\frac{-4}{4}\times 20=-20

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS