Find derivatives of the following functions:
• y=(4x+3)/ln[2x2 +3x−5] • y=3(e2x +e−2x)(x2 −4)
y=4x+3ln(2x2+3x−5),y=\frac{4x+3}{\ln(2x^2+3x-5)},y=ln(2x2+3x−5)4x+3,
y′=4ln(2x2+3x−5)−(4x+3)22x2+3x−5ln2(2x2+3x−5).y'=\frac{4\ln(2x^2+3x-5)-\frac{(4x+3)^2}{2x^2+3x-5}}{\ln^2(2x^2+3x-5)}.y′=ln2(2x2+3x−5)4ln(2x2+3x−5)−2x2+3x−5(4x+3)2.
y=3(e2x+e−2x)(x2−4),y=3(e^{2x}+e^{-2x})(x^2-4),y=3(e2x+e−2x)(x2−4),
y′=6e−2x(−x2+e4x(x2+x−4)+x+4).y'=6e^{-2x}(-x^2+e^{4x}(x^2+x-4)+x+4).y′=6e−2x(−x2+e4x(x2+x−4)+x+4).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments