Question #288027

A manufacturer in a monopolistically competitive industry produces two different brands of a product for which the demand functions are P1=56-4Q1 and P2=48-2Q2. and the joint cost function is



TC=Q12+5Q1Q2+Q22. Find the profit maximizing level of output and the price that should be charged for each brand.

1
Expert's answer
2022-01-17T12:36:56-0500

P1=564Q1P_1= 56-4Q_1

P2=482Q2P_2= 48-2Q_2

TC=Q12+5Q1Q2+Q22TC=Q_1^2+5Q_1Q_2+Q_2^2

Π=TRTC\Pi=TR-TC

=P1Q1+P2Q2= P_1Q_1+P_2Q_2 - (Q12+5Q1Q2+Q22)(Q_1^2+5Q_1Q_2+Q_2^2)

=Q1(564Q1)+Q2(482Q2)Q125Q1Q2Q22=Q_1(56-4Q_1)+Q_2(48-2Q_2)-Q_1^2-5Q_1Q_2-Q_2^2

=56Q14Q12+48Q22Q22Q125Q1Q2Q2256Q_1-4Q_1^2+48Q_2-2Q_2^2-Q_1^2-5Q_1Q_2-Q_2^2

First Order Condition

ΔΠΔQ1=5610Q15Q2=0\frac{\Delta\Pi}{\Delta Q_1}=56-10Q_1-5Q_2=0

ΔΠΔQ2=486Q25Q1=0\frac{\Delta\Pi}{\Delta Q_2}=48-6Q_2-5Q_1=0

Solve the two Equations Simultaneously by eliminating Q1Q_1

5610Q15Q2=056-10Q_1-5Q_2=0

(486Q25Q1=0)2(48-6Q_2-5Q_1=0)2

=5610Q15Q2=056-10Q_1-5Q_2=0

9610Q112Q2=096-10Q_1-12Q_2=0

40=7Q2_2

Q2=5.7Q_2= 5.7

Eliminate Q2fromtheaboveequations_2 from the above equations

=(5610Q15Q2=0)6(56-10Q_1-5Q_2=0)6

=(486Q25Q1=0)5=(48-6Q_2-5Q_1=0)5

33660Q130Q2=0336-60Q_1-30Q_2=0

24030Q225Q1=0240-30Q_2-25Q_1= 0

35Q1=9635Q_1=96

Q1=2.7Q_1= 2.7

From the Inverse Demand functions

P1=564(2.7)=45.2P_1=56-4(2.7)=45.2

P2=482(5.7)=36.6P_2=48-2(5.7)=36.6



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS