Qd1 = 90 – 2P1 + 3P2 – 5P3 ; Qs1 = P1 – 10
Qd2 = 36 + 3P1 – 3P2 + 2P3 ; Qs2 = –14 + P2
Qd3 = 45 – 3P1 + 3P2 – 3P3 ; Qs3 = P3 – 20
a. Determine the equilibrium prices and quantities for the three commodity Market
model.
At Equilibrium, Quantity demanded = Quantity supplied
"Q_{d1}=Q_{S2}"
"90-2P_1+ 3P_2-5P_3= P_1-10"
"=100-3P_1+ 3P_2-5P_3= 0" ....................(i)
"Q_{d2}=Q_{s2}"
"36+ 3P_1-3P_2+2P_3=-14+P_2"
"=50+3P_1-4P_2+2P_3= 0" .........................(ii)
"Q_{d3}=Q_{s3}"
"45-3P_1+ 3P_2-3P_3= P_3-20"
"=25-3P_1+ 3P_2-2P_3= 0" ...........................(iii)
Solve Eqns (I) and (ii) simultaneously by elimination method by adding the two eqns
"100-3P_1+ 3P_2-5P_3= 0"
"50+3P_1-4P_2+2P_3= 0"
="150-P_2-3P_3=0" ..............................................(iv)
Solve Eqns (ii) and (iii) simultaneously by adding the two Eqns
"50+3P_1-4P_2+2P_3= 0"
"25-3P_1+ 3P_2-2P_3= 0"
="75-P_2"
"P_2= 75"
From Eqn (iv),
"150-75-3P_3=0"
"3P_3=75"
"P_3= 25"
From Eqn (I)
"100-3P_1+ 3(75)-5(25)= 0"
"3P_1= 200"
"P_1= \\frac{200}{3}= 66.7"
"Q_1= 66.7-10= 56.7"
"Q_2= -14+75= 61"
"Q_3= 25-20=5"
Comments
Very helpful. Thank you
Leave a comment