Question #287790

Qd1 = 90 – 2P1 + 3P2 – 5P3 ; Qs1 = P1 – 10

Qd2 = 36 + 3P1 – 3P2 + 2P3 ; Qs2 = –14 + P2

Qd3 = 45 – 3P1 + 3P2 – 3P3 ; Qs3 = P3 – 20

a. Determine the equilibrium prices and quantities for the three commodity Market

model.


1
Expert's answer
2022-01-17T12:37:17-0500

At Equilibrium, Quantity demanded = Quantity supplied

Qd1=QS2Q_{d1}=Q_{S2}

902P1+3P25P3=P11090-2P_1+ 3P_2-5P_3= P_1-10

=1003P1+3P25P3=0=100-3P_1+ 3P_2-5P_3= 0 ....................(i)

Qd2=Qs2Q_{d2}=Q_{s2}


36+3P13P2+2P3=14+P236+ 3P_1-3P_2+2P_3=-14+P_2

=50+3P14P2+2P3=0=50+3P_1-4P_2+2P_3= 0 .........................(ii)


Qd3=Qs3Q_{d3}=Q_{s3}

453P1+3P23P3=P32045-3P_1+ 3P_2-3P_3= P_3-20

=253P1+3P22P3=0=25-3P_1+ 3P_2-2P_3= 0 ...........................(iii)

Solve Eqns (I) and (ii) simultaneously by elimination method by adding the two eqns

1003P1+3P25P3=0100-3P_1+ 3P_2-5P_3= 0

50+3P14P2+2P3=050+3P_1-4P_2+2P_3= 0

=150P23P3=0150-P_2-3P_3=0 ..............................................(iv)

Solve Eqns (ii) and (iii) simultaneously by adding the two Eqns

50+3P14P2+2P3=050+3P_1-4P_2+2P_3= 0

253P1+3P22P3=025-3P_1+ 3P_2-2P_3= 0

=75P275-P_2

P2=75P_2= 75

From Eqn (iv),

150753P3=0150-75-3P_3=0

3P3=753P_3=75

P3=25P_3= 25

From Eqn (I)

1003P1+3(75)5(25)=0100-3P_1+ 3(75)-5(25)= 0

3P1=2003P_1= 200

P1=2003=66.7P_1= \frac{200}{3}= 66.7

Q1=66.710=56.7Q_1= 66.7-10= 56.7

Q2=14+75=61Q_2= -14+75= 61

Q3=2520=5Q_3= 25-20=5





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Victoria
17.05.22, 09:53

Very helpful. Thank you

LATEST TUTORIALS
APPROVED BY CLIENTS