Question #287288

Given the demand and supply function for the three goods





qd1=20-p1-p3 ;qs1=-10+p1





qd2=40-2p2-p3 ;qs2=2p2





qd3=10-p1+p2-p3 ;qs3=-5+3p3



A Write the equilibrium condition?



B find the equilibrium price?




1
Expert's answer
2022-01-17T09:55:44-0500

a)a)

Equilibrium in the three commodity market occur when the supply for each of the 3 commodities equal to its demand.

That is,

Qd1=Qs1Qd2=Qs2Qd3=Qs3Qd_1=Qs_1\\Qd_2=Qs_2\\Qd_3=Qs_3

This is the equilibrium condition.


b)b)

To find the equilibrium price we proceed as follows.

For commodity 1,

Qd1=Qs1Qd_1=Qs_1

So,

20p1p3=10+p12p1+p3=30......(1)20-p_1-p_3=-10+p_1\\ 2p_1+p_3=30......(1)


For commodity 2,

Qd2=Qs2Qd_2=Qs_2

So,

402p2p3=2p24p2+p3=40...(2)40-2p_2-p_3=2p_2\\ 4p_2+p_3=40...(2)


For commodity 3,

Qd3=Qs3Qd_3=Qs_3

So,

10p1+p2p3=5+3p3p1p2+4p3=15.....(3)10-p_1+p_2-p_3=-5+3p_3\\ p_1-p_2+4p_3=15.....(3)


Equation (1)-Equation (2) gives,

2p14p2=10.....(4)2p_1-4p_2=-10.....(4)


Equation(3)(4×Equation(2))Equation(3)-(4\times Equation(2)) gives,

p117p2=145.....(5)p_1-17p_2=-145.....(5)


Solving equation (4) and (5),

Equation(4)(2×Equation(5))30p2=280    p2=283Equation(4)-(2\times Equation(5))\\ 30p2=280\implies p2={28\over3}


From equation (4), we can obtain the value of p1p_1

2p1(4×283)=102p1=823    p1=4132p_1-(4\times{28\over3})=-10\\ 2p_1={82\over3}\implies p1={41\over3}


From equation (1) we can obtain the value p3p_3

So,

(2×413)+p3=30p3=30823Therefore,p3=83(2\times{41\over3})+p_3=30\\ p_3=30-{82\over3}\\ Therefore,\\ p_3={8\over3}


Therefore, the equilibrium prices for commodities 1,2,3 are p1=413,p2=283,and p3=83p_1={41\over3}, p_2={28\over3}, and\space p_3={8\over3} respectively.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS