Answer to Question #285949 in Microeconomics for Nancy

Question #285949

Given below are the demand and the supply functions for three interdependent commodities.



Qd1=110 - 4P1+ 3P2 -4P3;Qs1= 2P1 -20



Qd2= 46+ 2P1 -4P2+4P3; Qs2= -14+ 2P2



Qd3= 20 -P1 + 4P2 - 2P3 ;Qs3=2P3 -10



Determine the equilibrium prices and quantities for the three commodity market model. Then compute the prices and cross elasticities of demand for all the three markets and interprete their coefficients

1
Expert's answer
2022-01-10T15:03:22-0500

Given:

Qd1 = 110 – 4P1 + 3P2 – 4P3 ; Qs1 = 2P1 – 20

Qd2 = 46 + 2P1 – 4P2 + 4P3 ; Qs2 = –14 + 2P2

Qd3 = 20 – P1 + 4P2 – 2P3 ; Qs3 = 2P3 – 10

(a) Equilibrium in the three commodity market occur when the supply for each of the 3 commodities equal to its demand.

That is,

Qd1=Qs1Qd2=Qs2Qd3=Qs3Qd_1=Qs_1\\Qd_2=Qs_2\\Qd_3=Qs_3

For commodity 1:

Qd1=QS11104P1+3P24P3=2P1206P1+3P24P3=1306P13P2+4P3=130(1)Qd_1=QS_1\\110 – 4P_1 + 3P_2 – 4P_3=2P_1-20\\−6P_1+3P_2−4P_3=-130\\6P_1−3P_2+4P_3=130 …(1)


For commodity 2:

Qd2=Qs246+2P14P2+4P3=14+2P22P16P2+4P3=602P1+6P2+4P3=60(2)Qd_2=Qs_2\\46 + 2P_1 −4P_2 + 4P_3=-14+2P_2\\2P_1−6P_2+4P_3=-60\\−2P_1+6P_2+4P_3= 60 …(2)


For commodity 3:

Qd3=Qs320P1+4P22P3=10+2P3P1+4P24P3=30P14P2+4P3=30(3)Qd_3=Qs_3\\20− P_1 +4P_2 −2P_3=– 10+2P_3\\−P_1+4P_2−4P_3=-30\\P_1−4P_2+4P_3=30 …(3)


Subtracting (2) from (1) gives:

6P13P2+4P3=130(1)2P1+6P2+4P3=60(2)(2)(1):(6P13P2+4P3)(2P1+6P2+4P3)=130606P1+2P13P26P2+4P34P3=708P19P2=70(4)6P_1−3P_2+4P_3=130 …(1)\\−2P_1+6P_2+4P_3=60 …(2)\\(2)−(1):\\(6P_1−3P_2+4P_3)−(−2P_1+6P_2+4P_3)=130−60\\6P_1+2P_1−3P_2−6P_2+4P_3−4P_3=70\\⇒8P_1−9P_2=70 …(4)


Similarly, subtracting (3) from (2):

2P1+6P2+4P3=60(2)P14P2+4P3=30(3)(2)(3):(2P1+6P2+4P3)(P14P2+4P3)=60303P1+10P2=30(5)−2P_1+6P_2+4P_3=60 …(2)\\P_1−4P_2+4P_3=30 …(3)\\(2)−(3):\\(−2P_1+6P_2+4P_3)−(P_1−4P_2+4P_3)=60−30\\ −3P_1+10P_2=30 …(5)

Solving (4) and (5) gives:

equation (5) gives:

3P1+10P2=303P1=3010P2P1=10P2303-3P_1+10P_2=30\\-3P_1=30-10P_2\\P1=\frac{10P_2-30}{3}


Substituting in (4)

8P19P2=708(10P2303)9P2=7080P23809P2=7080P227P23=70+8053P2=150×3P2=45053=8.49Since,P1=10P2303=10×8.49303=84.9303=18.38P_1-9P_2=70\\8(\frac{10P_2-30}{3})-9P_2=70\\\frac{80P_2}{3}-80-9P_2=70\\\frac{80P_2-27P_2}3=70+80\\53P_2=150×3\\P_2=\frac{450}{53}=8.49\\Since,\\P_1=\frac{10P_2-30}{3 } \\ =\frac{10×8.49-30}{3}\\ =\frac{84.9-30}{3}\\ =18.3

Substituting P1=18.3 and P2=8.49 in (1) gives P3:

2P1+6P2+4P3=602(18.3)+6(8.49)+4P3=6036.6+50.94+4P3=6014.34+4P3=60P3=6014.344=11.415-2P_1+6P_2+4P_3=60\\-2(18.3)+6(8.49)+4P_3=60\\-36.6+50.94+4P_3=60\\14.34+4P_3=60\\P_3=\frac{60-14.34}{4}=11.415


Substituting P1, P2 and P3 in the three demand equation gives Q1, Q2 and Q3.

Q1=1104P1+3P24P3=1104(18.3)+3(8.49)4(11.415)=53.01Q2=46+2P14P2+4P3Q2=46+2(18.3)4(8.49)+4(11.415)Q2=94.3Q3=20P1+4P22P3Q3=2018.3+4(8.49)2(11.415)Q3=12.83Q_1 = 110 – 4P_1 + 3P_2 – 4P_3 \\ =110−4(18.3)+3(8.49)−4(11.415) \\ =53.01\\Q_2= 46 + 2P_1 – 4P_2 + 4P_3\\Q_2=46+2(18.3)−4(8.49)+4(11.415)\\Q_2^*=94.3\\Q_3= 20 – P_1 + 4P_2 – 2P_3 \\Q_3=20−18.3+4(8.49)−2(11.415)\\Q_3^*=12.83

Therefore, we get the following equilibrium combinations for the three goods,

 (Q1,P1)=(53.01,18.3)(Q2,P2)=(94.3,8.49)(Q3,P3)=(12.83,11.415)(Q_1^*,P_1^*)=(53.01,18.3)\\(Q_2^*,P_2^*)=(94.3,8.49)\\(Q_3^*,P_3^*)=(12.83,11.415)



(b) Price elasticity of demand is calculated as :

Ed=dQ3P3×P3Q3Given,Qd3=20P1+4P22P3Ed=2P3Q3Ed=\frac{dQ_3}{P_3}×\frac{P_3}{Q_3}\\Given,\\ Qd_3 = 20 – P_1 + 4P_2 – 2P_3\\E_d=−2\frac{P_3}{Q_3}

The coefficient dQ3/dP3 implies that as the price of the 3rd commodity increases by 1 unit, its quantity demanded falls by 2 units.


Cross price elasticity is calculated as:

Cross Ed with respect to P1

=dQ3P1×P1Q3=1×P1Q3=P1Q3=\frac{dQ_3}{P_1}×\frac{P_1}{Q_3}\\=-1\times \frac{P_1}{Q_3}\\=-\frac{P_1}{Q_3}

The coefficient here, dQ3/dP1 implies that as the price of commodity 1 increases by 1 unit, the quantity demanded of commodity 3 falls by 1 unit.


Cross Ed with respect to P2

=dQ3P2×P2Q3=4×P1Q3=P1Q3=\frac{dQ_3}{P_2}×\frac{P_2}{Q_3}\\=4\times \frac{P_1}{Q_3}\\=-\frac{P_1}{Q_3}


The coefficient here, dQ3/dP1 implies that as the price of commodity 2 increases by 1 unit, the quantity demanded of commodity 3 increases by four units. A positive coefficient here implies that commodity 2 and 3 are substitutes.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment