Given below are the demand and the supply functions for three interdependent commodities.
Qd1=110 - 4P1+ 3P2 -4P3;Qs1= 2P1 -20
Qd2= 46+ 2P1 -4P2+4P3; Qs2= -14+ 2P2
Qd3= 20 -P1 + 4P2 - 2P3 ;Qs3=2P3 -10
Determine the equilibrium prices and quantities for the three commodity market model. Then compute the prices and cross elasticities of demand for all the three markets and interprete their coefficients
Given:
Qd1 = 110 – 4P1 + 3P2 – 4P3 ; Qs1 = 2P1 – 20
Qd2 = 46 + 2P1 – 4P2 + 4P3 ; Qs2 = –14 + 2P2
Qd3 = 20 – P1 + 4P2 – 2P3 ; Qs3 = 2P3 – 10
(a) Equilibrium in the three commodity market occur when the supply for each of the 3 commodities equal to its demand.
That is,
"Qd_1=Qs_1\\\\Qd_2=Qs_2\\\\Qd_3=Qs_3"
For commodity 1:
"Qd_1=QS_1\\\\110 \u2013 4P_1 + 3P_2 \u2013 4P_3=2P_1-20\\\\\u22126P_1+3P_2\u22124P_3=-130\\\\6P_1\u22123P_2+4P_3=130 \u2026(1)"
For commodity 2:
"Qd_2=Qs_2\\\\46 + 2P_1 \u22124P_2 + 4P_3=-14+2P_2\\\\2P_1\u22126P_2+4P_3=-60\\\\\u22122P_1+6P_2+4P_3= 60 \u2026(2)"
For commodity 3:
"Qd_3=Qs_3\\\\20\u2212 P_1 +4P_2 \u22122P_3=\u2013 10+2P_3\\\\\u2212P_1+4P_2\u22124P_3=-30\\\\P_1\u22124P_2+4P_3=30 \u2026(3)"
Subtracting (2) from (1) gives:
"6P_1\u22123P_2+4P_3=130 \u2026(1)\\\\\u22122P_1+6P_2+4P_3=60 \u2026(2)\\\\(2)\u2212(1):\\\\(6P_1\u22123P_2+4P_3)\u2212(\u22122P_1+6P_2+4P_3)=130\u221260\\\\6P_1+2P_1\u22123P_2\u22126P_2+4P_3\u22124P_3=70\\\\\u21d28P_1\u22129P_2=70 \u2026(4)"
Similarly, subtracting (3) from (2):
"\u22122P_1+6P_2+4P_3=60 \u2026(2)\\\\P_1\u22124P_2+4P_3=30 \u2026(3)\\\\(2)\u2212(3):\\\\(\u22122P_1+6P_2+4P_3)\u2212(P_1\u22124P_2+4P_3)=60\u221230\\\\ \u22123P_1+10P_2=30 \u2026(5)"
Solving (4) and (5) gives:
equation (5) gives:
"-3P_1+10P_2=30\\\\-3P_1=30-10P_2\\\\P1=\\frac{10P_2-30}{3}"
Substituting in (4)
"8P_1-9P_2=70\\\\8(\\frac{10P_2-30}{3})-9P_2=70\\\\\\frac{80P_2}{3}-80-9P_2=70\\\\\\frac{80P_2-27P_2}3=70+80\\\\53P_2=150\u00d73\\\\P_2=\\frac{450}{53}=8.49\\\\Since,\\\\P_1=\\frac{10P_2-30}{3 } \\\\ =\\frac{10\u00d78.49-30}{3}\\\\ =\\frac{84.9-30}{3}\\\\ =18.3"
Substituting P1=18.3 and P2=8.49 in (1) gives P3:
"-2P_1+6P_2+4P_3=60\\\\-2(18.3)+6(8.49)+4P_3=60\\\\-36.6+50.94+4P_3=60\\\\14.34+4P_3=60\\\\P_3=\\frac{60-14.34}{4}=11.415"
Substituting P1, P2 and P3 in the three demand equation gives Q1, Q2 and Q3.
"Q_1 = 110 \u2013 4P_1 + 3P_2 \u2013 4P_3 \\\\ =110\u22124(18.3)+3(8.49)\u22124(11.415) \\\\ =53.01\\\\Q_2= 46 + 2P_1 \u2013 4P_2 + 4P_3\\\\Q_2=46+2(18.3)\u22124(8.49)+4(11.415)\\\\Q_2^*=94.3\\\\Q_3= 20 \u2013 P_1 + 4P_2 \u2013 2P_3 \\\\Q_3=20\u221218.3+4(8.49)\u22122(11.415)\\\\Q_3^*=12.83"
Therefore, we get the following equilibrium combinations for the three goods,
"(Q_1^*,P_1^*)=(53.01,18.3)\\\\(Q_2^*,P_2^*)=(94.3,8.49)\\\\(Q_3^*,P_3^*)=(12.83,11.415)"
(b) Price elasticity of demand is calculated as :
"Ed=\\frac{dQ_3}{P_3}\u00d7\\frac{P_3}{Q_3}\\\\Given,\\\\ Qd_3 = 20 \u2013 P_1 + 4P_2 \u2013 2P_3\\\\E_d=\u22122\\frac{P_3}{Q_3}"
The coefficient dQ3/dP3 implies that as the price of the 3rd commodity increases by 1 unit, its quantity demanded falls by 2 units.
Cross price elasticity is calculated as:
Cross Ed with respect to P1
"=\\frac{dQ_3}{P_1}\u00d7\\frac{P_1}{Q_3}\\\\=-1\\times \\frac{P_1}{Q_3}\\\\=-\\frac{P_1}{Q_3}"
The coefficient here, dQ3/dP1 implies that as the price of commodity 1 increases by 1 unit, the quantity demanded of commodity 3 falls by 1 unit.
Cross Ed with respect to P2
"=\\frac{dQ_3}{P_2}\u00d7\\frac{P_2}{Q_3}\\\\=4\\times \\frac{P_1}{Q_3}\\\\=-\\frac{P_1}{Q_3}"
The coefficient here, dQ3/dP1 implies that as the price of commodity 2 increases by 1 unit, the quantity demanded of commodity 3 increases by four units. A positive coefficient here implies that commodity 2 and 3 are substitutes.
Comments
Leave a comment