Question #284334

13. Following are different algebraic expressions of the production function. Decide whether

each one has constant, increasing, or decreasing returns to scale.

a. Q = 75L0.25K0.75

b. Q = 75A0.15B0.40C0.45

c. Q = 75L0.60K0.70

d. Q = 100 + 50L + 50K

e. Q = 50L + 50K+ 50LK

f. Q = 50L2 + 50K2


1
Expert's answer
2022-01-05T11:14:12-0500

a). Q = 75L0.25K0.75

0.25+0.75=10.25+0.75=1

Constant returns to scale


b). Q = 75A0.15B0.40C0.45

0.15+0.40+0.45=10.15+0.40+0.45=1

Constant returns to scale


c). Q = 75L0.60K0.70

0.60+0.70=1.300.60+0.70=1.30

Increasing returns to scale


d). Q = 100 + 50L + 50K

Assumes 10 units of each input;

Q=100+(50×10)+(50×10)=1100Q=100+(50\times10)+(50\times10)=1100

If 20 units of each input;

Q=100+(50×20)+(50×20)=2100Q=100+(50\times20)+(50\times20)=2100

So, EQ<1EQ<1

Decreasing returns to scale


e). Q = 50L + 50K+ 50LK

Assumes 10 units of each input;

Q=(50×10)+(50×10)+(50×10×10)=6000Q=(50\times10)+(50\times10)+(50\times10\times10)=6000

If 20 units of each input;

Q=(50×20)+(50×20)+(50×20×20)=22000Q=(50\times20)+(50\times20)+(50\times20\times20)=22000

So, EQ>1EQ>1

Increasing returns to scale


f). Q = 50L2 + 50K2

Assumes 2 units of each input;

Q=(50×22)+(50×22)=400Q=(50\times2^2)+(50\times2^2)=400

In case of using 4 units of each input;

Q=(50×42)+(50×42)=1600Q=(50\times4^2)+(50\times4^2)=1600

So, EQ>1EQ>1

Increasing returns to scale



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS