13. Following are different algebraic expressions of the production function. Decide whether
each one has constant, increasing, or decreasing returns to scale.
a. Q = 75L0.25K0.75
b. Q = 75A0.15B0.40C0.45
c. Q = 75L0.60K0.70
d. Q = 100 + 50L + 50K
e. Q = 50L + 50K+ 50LK
f. Q = 50L2 + 50K2
a). Q = 75L0.25K0.75
"0.25+0.75=1"
Constant returns to scale
b). Q = 75A0.15B0.40C0.45
"0.15+0.40+0.45=1"
Constant returns to scale
c). Q = 75L0.60K0.70
"0.60+0.70=1.30"
Increasing returns to scale
d). Q = 100 + 50L + 50K
Assumes 10 units of each input;
"Q=100+(50\\times10)+(50\\times10)=1100"
If 20 units of each input;
"Q=100+(50\\times20)+(50\\times20)=2100"
So, "EQ<1"
Decreasing returns to scale
e). Q = 50L + 50K+ 50LK
Assumes 10 units of each input;
"Q=(50\\times10)+(50\\times10)+(50\\times10\\times10)=6000"
If 20 units of each input;
"Q=(50\\times20)+(50\\times20)+(50\\times20\\times20)=22000"
So, "EQ>1"
Increasing returns to scale
f). Q = 50L2 + 50K2
Assumes 2 units of each input;
"Q=(50\\times2^2)+(50\\times2^2)=400"
In case of using 4 units of each input;
"Q=(50\\times4^2)+(50\\times4^2)=1600"
So, "EQ>1"
Increasing returns to scale
Comments
Leave a comment