DA=20–2PA+4PB+PCSA=4PA−5DB=10+3PA−5PB+2PCSB=3PB−7DC=70+4PA+2PB−5PCSC=5PC−16
At equilibrium,
DA=SA=>20−2PA+4PB+PC=4PA−5=>4PA+2PA−4PB−PC=20+5
=>6PA−4PB−PC=25 ....(1)
DB=SB=>10+3PA−5PB+2PC=3PB–7=>−3PA+3PB+5PB−2PC=10+7
=>−3PA+8PB−2PC=17 ....(2)
DC=SC
=>70+4PA+2PB−5PC=5PC−16=>−4PA−2PB+5PC+5PC=70+16
=>−4PA−2PB+10PC=86 ....(3)
From the system of equations, we get the determinant as,
∣D∣=∣∣6−3−4−48−2−1−210∣∣=6(80−4)+4(−30−8)−1(6+32)=456−152−38=266
By Cramer's rule,
PA∗=∣D∣∣∣251786−48−2−1−210∣∣=26625(80−4)+4(170+172)−1(−34−688)PA∗=26625×76+4×342−1(−722)=2661900+1368+722=2663990PA∗=15QA∗=4×15−5=60−5=55PB∗=∣D∣∣∣6−3−4251786−1−210∣∣=2666(170+172)−25(−30−8)−1(−258+68)PB∗=2666×342+25×38−1(−190)=2662052+950+190=2663192PB∗=12QB∗=3×12−7=36−7=29PC∗=∣D∣∣∣6−3−4−48−2251786∣∣=2666(688+34)+4(−258+68)+25(6+32)PC∗=2666×722−4×190+25×38=2664332−760+950=2664522PC∗=17QC∗=5×17−16=85−16=69DB=10+3PA−5PB+2PCdPAdDB=3dPBdDB=−5dPCdDB=2
At equilibrium,
DB=29,PA∗=15,PB∗=12,PC∗=17
Elasticity of demand with respect to PA,
εA=dPAdDBDBPA=3×2915=1.55
εA>0 implies A and B are substitute goods.
Elasticity of demand with respect to PB,
εB=dPBdDBDBPB=−5×2912=−2.0
∣εB∣>1 implies the demand for good B is elastic.
Elasticity of demand with respect to PC,
εC=dPCdDBDBPC=2×2917=1.17
εC>0 implies B and C are substitute goods.
Comments
Leave a comment