Answer to Question #280137 in Microeconomics for Sad

Question #280137

Suppose there are three types of Apples A, B and C being sold and consumed. The demand and supply equations for each type are:


Da=20-2Pa+4Pb+Pc; Sa=4Pa-5; Db=10+3Pa-5Pb+2Pc ;Sb=3Pb-7;Dc=70+4Pa+2Pb-5Pc ;Sc=5Pc-16


Determine equilibrium prices and quantities using Cramer’s rule.


• Calculate the elasticity of demand for B with respect to prices of variety A, B and C and interpret the economic meaning of the results.

1
Expert's answer
2021-12-17T08:41:01-0500

DA=202PA+4PB+PCSA=4PA5DB=10+3PA5PB+2PCSB=3PB7DC=70+4PA+2PB5PCSC=5PC16D_A= 20 – 2P_A + 4P_B + P_C \\ S_A=4P_A-5 \\ D_B=10+3P_A-5P_B+2P_C \\ S_B=3P_B-7 \\ D_C=70+4P_A+2P_B-5P_C \\ S_C=5P_C-16

At equilibrium,

DA=SA=>202PA+4PB+PC=4PA5=>4PA+2PA4PBPC=20+5D_A=S_A \\ =>20-2P_A+4P_B+P_C=4P_A-5 \\ =>4P_A+2P_A-4P_B- P_C=20+5

=>6PA4PBPC=25=>6P_A-4P_B- P_C=25 ....(1)

DB=SB=>10+3PA5PB+2PC=3PB7=>3PA+3PB+5PB2PC=10+7D_B=S_B \\ => 10+ 3P_A - 5P_B + 2P_C = 3P_B – 7 \\ =>-3P_A+3P_B+5P_B-2P_C=10+7 \\

=>3PA+8PB2PC=17=>-3P_A+8P_B-2P_C=17 ....(2)

DC=SCD_C = S_C

=>70+4PA+2PB5PC=5PC16=>4PA2PB+5PC+5PC=70+16=>70+4P_A+2P_B-5P_C=5P_C-16 \\ =>-4P_A-2P_B+5P_C+5P_C=70+16

=>4PA2PB+10PC=86=>-4P_A-2P_B+10P_C=86 ....(3)

From the system of equations, we get the determinant as,

D=6413824210=6(804)+4(308)1(6+32)=45615238=266|D|=\begin{vmatrix} 6 &-4 &-1 \\ -3& 8 &-2 \\ -4 &-2 & 10 \end{vmatrix}=6(80-4)+4(-30-8)-1(6+32)=456-152-38=266

By Cramer's rule,

PA=2541178286210D=25(804)+4(170+172)1(34688)266PA=25×76+4×3421(722)266=1900+1368+722266=3990266PA=15QA=4×155=605=55PB=6251317248610D=6(170+172)25(308)1(258+68)266PB=6×342+25×381(190)266=2052+950+190266=3192266PB=12QB=3×127=367=29PC=642538174286D=6(688+34)+4(258+68)+25(6+32)266PC=6×7224×190+25×38266=4332760+950266=4522266PC=17QC=5×1716=8516=69DB=10+3PA5PB+2PCdDBdPA=3dDBdPB=5dDBdPC=2P_A^*=\frac{\begin{vmatrix} 25 &-4 &-1 \\ 17& 8 &-2 \\ 86 &-2 & 10 \end{vmatrix}}{|D|}=\frac{25(80-4)+4(170+172)-1(-34-688)}{266} \\ P_A^*=\frac{25 \times 76+4 \times 342-1(-722)}{266}=\frac{1900+1368+722}{266}=\frac{3990}{266} \\ P_A^*=15 \\ Q_A^*=4 \times 15-5=60-5=55 \\ P_B^*=\frac{\begin{vmatrix} 6 &25 &-1 \\ -3& 17 &-2 \\ -4 &86 & 10 \end{vmatrix}}{|D|}=\frac{6(170+172)-25(-30-8)-1(-258+68)}{266} \\ P_B^*=\frac{6 \times 342+25 \times 38-1(-190)}{266}=\frac{2052+950+190}{266}=\frac{3192}{266} \\ P_B^*=12 \\ Q_B^*=3 \times 12-7=36-7=29 \\ P_C^*=\frac{\begin{vmatrix} 6 &-4 &25 \\ -3& 8 &17 \\ -4 &-2 & 86 \end{vmatrix}}{|D|}=\frac{6(688+34)+4(-258+68)+25(6+32)}{266} \\ P_C^*=\frac{6 \times 722-4 \times 190+25 \times 38}{266}=\frac{4332-760+950}{266}=\frac{4522}{266} \\ P_C^*=17 \\ Q_C^*=5 \times 17-16=85-16=69 \\ D_B=10+3P_A-5P_B+2P_C \\ \frac{\mathrm{d} D_B}{\mathrm{d} P_A}=3 \\ \frac{\mathrm{d} D_B}{\mathrm{d} P_B}=-5 \\ \frac{\mathrm{d} D_B}{\mathrm{d} P_C}=2

At equilibrium,

DB=29,PA=15,PB=12,PC=17D_B=29 , \small P_A^*=15 , \small P_B^*=12 , \small P_C^*=17

Elasticity of demand with respect to PA,

εA=dDBdPAPADB=3×1529=1.55\varepsilon _A=\frac{\mathrm{d} D_B}{\mathrm{d} P_A}\frac{P_A}{D_B}=3 \times\frac{15}{29}=1.55

εA>0\varepsilon _A>0 implies A and B are substitute goods.

Elasticity of demand with respect to PB,

εB=dDBdPBPBDB=5×1229=2.0\varepsilon _B=\frac{\mathrm{d} D_B}{\mathrm{d} P_B}\frac{P_B}{D_B}=-5 \times \frac{12}{29}=-2.0

εB>1|\varepsilon _B|>1 implies the demand for good B is elastic.

Elasticity of demand with respect to PC,

εC=dDBdPCPCDB=2×1729=1.17\varepsilon _C=\frac{\mathrm{d} D_B}{\mathrm{d} P_C}\frac{P_C}{D_B}=2 \times\frac{17}{29}=1.17

εC>0\varepsilon _C>0 implies B and C are substitute goods.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment