Solution
Demand function
Q=120−P
So,
P=120−Q (1)
Since there are two firms in the market:
Q=q1+q2
Cost Function
C=30Q
Firm 1 Cost: 30q1 (2)
Firm 2 Cost: 30q1 (3)
Revenue: Q∗P
Firm 1 Revenue:
R=q1(120−(q1+q2))=120q1−q12−q1q2 (4)
Firm 2 Revenue:
R=q2(120−(q1+q2))=120q2−q2q1−q22 (5)
Profit: Revenue−TotalCost=R−C
Firm 1 Profit: (4) minus (2)
π(q1,q2)=(120q1−q12−q1q2)−30q1
π(q1,q2)=90q1−q12−q1q2 (6)
Firm 2 profit:
π(q1,q2)=(120q2−q1q2−q12)−30q2
π(q1,q2)=90q2−q2q1−q22 (7)
Derivative of π with respect to q1 for (6)
dπ/(dq1)=90−2q1−q2=0
90−q2=2q1
q1=(90−q2)/2 (8)
Derivative of π with respect to q2 for (7)
dπ/(dq1)=90−q1−2q2−=0
90−q1=2q2
q2=(90−q1)/2 (9)
Substitute (9) into (8)
q1=(90−(90−q1)/2)/2
q1=(90+q1)/4
90+q1=4q1
90=3q1
q1=30 units
Substitute q1 with 30 in (9)
q2=(90−30)/2=60/2
q2=30 units
Each Firm Profit
Substitute the value of q1 and q1 into (6) and (7)
Firm 1 profit:
π(q1,q2)=90(30)−(30)2−30(30)= $900
Firm 2 profit:
π(q1,q2)=90(30)−30(30)−(30)2= $900
Comments