Question #277206

In Nyeri town there are only two milk processors. The local inverse demand for milk is given by: Q = 120− P, where P denotes price, Q denotes the total quantity measured in cartons. Both milk processors have the same cost function given by C = 30Q, where C is total cost and Q is output measured in cartons. Calculate the profit for each firm







1
Expert's answer
2021-12-09T09:42:34-0500

Solution

Demand function

Q=120PQ=120-P

So,

P=120QP=120-Q (1)

Since there are two firms in the market:

Q=q1+q2Q=q_1+q_2


Cost Function

C=30QC=30Q

Firm 1 Cost: 30q130q_1 (2)

Firm 2 Cost: 30q130q_1 (3)


Revenue: QPQ*P

Firm 1 Revenue:

R=q1(120(q1+q2))=120q1q12q1q2R= q_1 (120-(q_1+q_2))=120q_1-q_1^2-q_1q_2 (4)

Firm 2 Revenue:

R=q2(120(q1+q2))=120q2q2q1q22R= q_2 (120-(q_1+q_2))=120q_2-q_2q_1-q_2^2 (5)


Profit: RevenueTotalCost=RCRevenue -Total Cost=R-C

Firm 1 Profit: (4) minus (2)

π(q1,q2)=(120q1q12q1q2)30q1π(q_1,q_2)=(120q_1-q_1^2-q_1q_2)-30q_1

π(q1,q2)=90q1q12q1q2π(q_1,q_2)=90q_1-q_1^2-q_1q_2 (6)

Firm 2 profit:

π(q1,q2)=(120q2q1q2q12)30q2π(q_1,q_2)=(120q_2-q_1q_2-q_1^2)-30q_2

π(q1,q2)=90q2q2q1q22π(q_1,q_2)=90q_2-q_2q_1-q_2^2 (7)

Derivative of ππ with respect to q1q_1 for (6)

dπ/(dq1)=902q1q2=0dπ/(dq_1 )=90-2q_1-q_2=0

90q2=2q190-q_2=2q_1

q1=(90q2)/2q_1=(90-q_2)/2 (8)


Derivative of ππ with respect to q2q_2 for (7)

dπ/(dq1)=90q12q2=0dπ/(dq_1 )=90-q_1-2q_2-=0

90q1=2q290-q_1=2q_2

q2=(90q1)/2q_2=(90-q_1)/2 (9)

Substitute (9) into (8)

q1=(90(90q1)/2)/2q_1=(90-(90-q_1)/2)/2

q1=(90+q1)/4q_1=(90+q_1)/4

90+q1=4q190+q_1=4q_1

90=3q190=3q_1

q1=30q_1=30 units


Substitute q1q_1 with 30 in (9)

q2=(9030)/2=60/2q_2=(90-30)/2=60/2

q2=30q_2=30 units


Each Firm Profit

Substitute the value of q1q_1 and q1q_1 into (6) and (7)

Firm 1 profit:

π(q1,q2)=90(30)(30)230(30)=π(q_1,q_2)=90(30)-(30)^2-30(30)= $900900

Firm 2 profit:

π(q1,q2)=90(30)30(30)(30)2=π(q_1,q_2)=90(30)-30(30)-(30)^2= $900900




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS