Assume the utility function to be:
U = x y + x + y U=xy+x+y U = x y + x + y
Determining the slope indifference curve:
d U = x d y + y d x + d x + d y dU=xdy+ydx+dx+dy d U = x d y + y d x + d x + d y
Along any indifference curve, d U = 0 dU=0 d U = 0
x d y + y d x + d x + d y = 0 d y ( x + 1 ) + d x ( y + 1 ) = 0 d y ( x + 1 ) = − d x ( y + 1 ) d y d x = − y + 1 x + 1 M R S x y = − y + 1 x + 1 xdy+ydx+dx+dy=0\\dy(x+1)+dx(y+1)=0\\dy(x+1)=-dx(y+1)\\\frac{dy}{dx}=-\frac{y+1}{x+1}\\MRS_{xy}=-\frac{y+1}{x+1} x d y + y d x + d x + d y = 0 d y ( x + 1 ) + d x ( y + 1 ) = 0 d y ( x + 1 ) = − d x ( y + 1 ) d x d y = − x + 1 y + 1 MR S x y = − x + 1 y + 1
The slope of indifference curve is negative
Differentiating it again
d ( M R S x y ) d x = − [ ( x + 1 ) d y d x − ( y + 1 ) ( x + 1 ) 2 ] d ( M R S x y ) d x = − [ − ( x + 1 ) y + 1 x + 1 − ( y + 1 ) ( x + 1 ) 2 ] > 0 \frac{d(MRS_{xy})}{dx}=-[\frac{(x+1)\frac{dy}{dx}-(y+1)}{(x+1)^2}]\\\frac{d(MRS_{xy})}{dx}=-[-\frac{(x+1)\frac{y+1}{x+1}-(y+1)}{(x+1)^2}]>0 d x d ( MR S x y ) = − [ ( x + 1 ) 2 ( x + 1 ) d x d y − ( y + 1 ) ] d x d ( MR S x y ) = − [ − ( x + 1 ) 2 ( x + 1 ) x + 1 y + 1 − ( y + 1 ) ] > 0
Therefore, the indifference curve is strict convex
The budget equation is:
P x x + P y y = I P_xx+P_yy=I P x x + P y y = I
Solving this in general:
max: U = x y + x + y U=xy+x+y U = x y + x + y
subject to: P x x + P y y = I P_xx+P_yy=I P x x + P y y = I
The Lagrangian expression is:
L = x y + x + y + λ [ I − x P x − y P y ] L=xy+x+y+\lambda[I-xP_x-yP_y] L = x y + x + y + λ [ I − x P x − y P y ]
The first order conditions are:
∂ L ∂ x = y + 1 − λ P x = 0 − − − − − ( 1 ) ∂ L ∂ y = x + 1 − λ P y = 0 − − − − − ( 2 ) ∂ L ∂ λ = I = x P x + y P y − − − − − ( 3 ) \frac{\partial L}{\partial x}=y+1-\lambda P_x=0-----(1)\\\frac{\partial L}{\partial y}=x+1-\lambda P_y=0-----(2)
\\\frac{\partial L}{\partial \lambda}=I=xP_x+yP_y-----(3) ∂ x ∂ L = y + 1 − λ P x = 0 − − − − − ( 1 ) ∂ y ∂ L = x + 1 − λ P y = 0 − − − − − ( 2 ) ∂ λ ∂ L = I = x P x + y P y − − − − − ( 3 )
From (1) and (2):
y + 1 x + 1 = P x P y P x x + P x = y P y + P y P x x = y P y + P y − P x \frac{y+1}{x+1}=\frac{P_x}{P_y}\\P_xx+P_x=yP_y+P_y\\P_xx=yP_y+P_y-P_x x + 1 y + 1 = P y P x P x x + P x = y P y + P y P x x = y P y + P y − P x
Substitute this in (3):
y P y + P y = P x + y P y = I 2 y P y + P y − P x = I y = I + P x − P y 2 P y yP_y+P_y=P_x+yP_y=I\\2yP_y+P_y-P_x=I\\y=\frac{I+P_x-P_y}{2P_y} y P y + P y = P x + y P y = I 2 y P y + P y − P x = I y = 2 P y I + P x − P y
This is the demand function of good y
P y y = I + P x − P y 2 P x x = y P y + P y − P x P x x = I + P x − P y 2 + P y − P x P x x = I + P x − P y + 2 P y − 2 P x 2 P x x = I + P y − P x 2 P_yy=\frac{I+P_x-P_y}{2}\\P_xx=yP_y+P_y-P_x\\P_xx=\frac{I+P_x-P_y}{2}+P_y-P_x\\P_xx=\frac{I+P_x-P_y+2P_y-2P_x}{2}\\P_xx=\frac{I+P_y-P_x}{2} P y y = 2 I + P x − P y P x x = y P y + P y − P x P x x = 2 I + P x − P y + P y − P x P x x = 2 I + P x − P y + 2 P y − 2 P x P x x = 2 I + P y − P x
x = I + P y − P x 2 P x x=\frac{I+P_y-P_x}{2P_x} x = 2 P x I + P y − P x
This is the demand function for good x
The prices are $2 and $1 for good x and good y respectively and the income is $15
Thus, the budget function is:
2 x + y = 15 2x+y=15 2 x + y = 15
max: U = x y + x + y U=xy+x+y U = x y + x + y
subject to: 2 x + y = 15 2x+y=15 2 x + y = 15
x = I + P y − P x 2 P x = 15 + 1 − 2 2 ∗ 2 = 3.5 y = I + P x − P y 2 P y = 15 + 2 − 1 2 ∗ 1 = 8 x=\frac{I+P_y-P_x}{2P_x}=\frac{15+1-2}{2*2}=3.5\\y=\frac{I+P_x-P_y}{2P_y}=\frac{15+2-1}{2*1}=8 x = 2 P x I + P y − P x = 2 ∗ 2 15 + 1 − 2 = 3.5 y = 2 P y I + P x − P y = 2 ∗ 1 15 + 2 − 1 = 8
The demand function for x is 3.5 and y is 8 units
Now, price of y rises to $2 but individual wants to consume initial level of utility
The new budget equation is:
2 x + 2 y = I ′ 2x+2y=I' 2 x + 2 y = I ′
Where I ′ I' I ′ is unknown
The initial level of utility is:
U = 3.5 ∗ 8 + 3.5 + 8 = 39.5 ≈ 40 U=3.5*8+3.5+8=39.5\approx40 U = 3.5 ∗ 8 + 3.5 + 8 = 39.5 ≈ 40
Now, x s = I ′ + 2 − 2 2 ∗ 2 = I ′ 4 x^s=\frac{I'+2-2}{2*2}=\frac{I'}{4} x s = 2 ∗ 2 I ′ + 2 − 2 = 4 I ′
and
y s = I ′ + 2 − 2 2 ∗ 2 = I ′ 4 y^s=\frac{I'+2-2}{2*2}=\frac{I'}{4} y s = 2 ∗ 2 I ′ + 2 − 2 = 4 I ′
U = I ′ 2 16 + I ′ 4 + I ′ 4 = 40 U=\frac{I'^2}{16}+\frac{I'}{4}+\frac{I'}{4}=40 U = 16 I ′2 + 4 I ′ + 4 I ′ = 40
Then:
I ′ 2 + 8 I ′ 16 = 40 I ′ 2 + 8 I ′ = 640 I ′ 2 + 8 I ′ − 640 = 0 \frac{I'^2+8I'}{16}=40\\I'^2+8I'=640\\I'^2+8I'-640=0 16 I ′2 + 8 I ′ = 40 I ′2 + 8 I ′ = 640 I ′2 + 8 I ′ − 640 = 0
You can solve this by the quadratic formula:
I ′ = − 8 ± 64 + ( 4 ∗ 640 ) 2 = − 8 ± 51.22 2 I'=\frac{-8\pm\sqrt{64+(4*640)}}{2}=\frac{-8\pm51.22}{2} I ′ = 2 − 8 ± 64 + ( 4 ∗ 640 ) = 2 − 8 ± 51.22
Income should not be negative, so I ′ = 21.61 I'=21.61 I ′ = 21.61
Therefore, income should be increased by:
21.61 − 15 = 6.61 21.61-15=6.61 21.61 − 15 = 6.61
Comments