Question #275700

Do each of a-d, both geometrically (you need not be precise) and using calculus. There are only two goods; x is the quantity of one good and y of the other. Your income is I and u(x,y) = xy + x + y.

(a) Px = $2; Py = $1; I = $15. Suppose Py rises to $2. By how much must I increase in order that you be as well off as before?


1
Expert's answer
2021-12-06T16:27:26-0500

Assume the utility function to be:

U=xy+x+yU=xy+x+y

Determining the slope indifference curve:

dU=xdy+ydx+dx+dydU=xdy+ydx+dx+dy

Along any indifference curve, dU=0dU=0

xdy+ydx+dx+dy=0dy(x+1)+dx(y+1)=0dy(x+1)=dx(y+1)dydx=y+1x+1MRSxy=y+1x+1xdy+ydx+dx+dy=0\\dy(x+1)+dx(y+1)=0\\dy(x+1)=-dx(y+1)\\\frac{dy}{dx}=-\frac{y+1}{x+1}\\MRS_{xy}=-\frac{y+1}{x+1}

The slope of indifference curve is negative

Differentiating it again

d(MRSxy)dx=[(x+1)dydx(y+1)(x+1)2]d(MRSxy)dx=[(x+1)y+1x+1(y+1)(x+1)2]>0\frac{d(MRS_{xy})}{dx}=-[\frac{(x+1)\frac{dy}{dx}-(y+1)}{(x+1)^2}]\\\frac{d(MRS_{xy})}{dx}=-[-\frac{(x+1)\frac{y+1}{x+1}-(y+1)}{(x+1)^2}]>0

Therefore, the indifference curve is strict convex

The budget equation is:

Pxx+Pyy=IP_xx+P_yy=I

Solving this in general:

max: U=xy+x+yU=xy+x+y

subject to: Pxx+Pyy=IP_xx+P_yy=I

The Lagrangian expression is:

L=xy+x+y+λ[IxPxyPy]L=xy+x+y+\lambda[I-xP_x-yP_y]

The first order conditions are:

Lx=y+1λPx=0(1)Ly=x+1λPy=0(2)Lλ=I=xPx+yPy(3)\frac{\partial L}{\partial x}=y+1-\lambda P_x=0-----(1)\\\frac{\partial L}{\partial y}=x+1-\lambda P_y=0-----(2) \\\frac{\partial L}{\partial \lambda}=I=xP_x+yP_y-----(3)

From (1) and (2):

y+1x+1=PxPyPxx+Px=yPy+PyPxx=yPy+PyPx\frac{y+1}{x+1}=\frac{P_x}{P_y}\\P_xx+P_x=yP_y+P_y\\P_xx=yP_y+P_y-P_x

Substitute this in (3):

yPy+Py=Px+yPy=I2yPy+PyPx=Iy=I+PxPy2PyyP_y+P_y=P_x+yP_y=I\\2yP_y+P_y-P_x=I\\y=\frac{I+P_x-P_y}{2P_y}

This is the demand function of good y

Pyy=I+PxPy2Pxx=yPy+PyPxPxx=I+PxPy2+PyPxPxx=I+PxPy+2Py2Px2Pxx=I+PyPx2P_yy=\frac{I+P_x-P_y}{2}\\P_xx=yP_y+P_y-P_x\\P_xx=\frac{I+P_x-P_y}{2}+P_y-P_x\\P_xx=\frac{I+P_x-P_y+2P_y-2P_x}{2}\\P_xx=\frac{I+P_y-P_x}{2}

x=I+PyPx2Pxx=\frac{I+P_y-P_x}{2P_x}

This is the demand function for good x


The prices are $2 and $1 for good x and good y respectively and the income is $15

Thus, the budget function is:

2x+y=152x+y=15

max: U=xy+x+yU=xy+x+y

subject to: 2x+y=152x+y=15


x=I+PyPx2Px=15+1222=3.5y=I+PxPy2Py=15+2121=8x=\frac{I+P_y-P_x}{2P_x}=\frac{15+1-2}{2*2}=3.5\\y=\frac{I+P_x-P_y}{2P_y}=\frac{15+2-1}{2*1}=8

The demand function for x is 3.5 and y is 8 units

Now, price of y rises to $2 but individual wants to consume initial level of utility

The new budget equation is:

2x+2y=I2x+2y=I'

Where II' is unknown

The initial level of utility is:

U=3.58+3.5+8=39.540U=3.5*8+3.5+8=39.5\approx40

Now, xs=I+2222=I4x^s=\frac{I'+2-2}{2*2}=\frac{I'}{4}

and

ys=I+2222=I4y^s=\frac{I'+2-2}{2*2}=\frac{I'}{4}

U=I216+I4+I4=40U=\frac{I'^2}{16}+\frac{I'}{4}+\frac{I'}{4}=40

Then:

I2+8I16=40I2+8I=640I2+8I640=0\frac{I'^2+8I'}{16}=40\\I'^2+8I'=640\\I'^2+8I'-640=0

You can solve this by the quadratic formula:

I=8±64+(4640)2=8±51.222I'=\frac{-8\pm\sqrt{64+(4*640)}}{2}=\frac{-8\pm51.22}{2}

Income should not be negative, so I=21.61I'=21.61

Therefore, income should be increased by:

21.6115=6.6121.61-15=6.61


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS