Question #275332

Robinson's preferences between apples (a) and bananas (b) are expressed by the following:

 

U = (a+2)0.5(b+1)0.5

 

(a) Show that Robinson's indifference curves are negatively sloped.

(b) Are they convex to the origin? Explain.


1
Expert's answer
2021-12-06T16:38:02-0500

Robinson's interference curves


a.) From U = U = (a + 2)0.5 ∗(b+ 1)0.5

Totally differentiating the utility function

du=δδa[(a+2)0.5(b+1)0.5da]+δδb[(a+2)0.5(b+1)0.5db]du=\frac{\delta}{\delta a}[(a+2)^{0.5}(b+1)^{0.5}da]+\frac{\delta}{\delta b}[(a+2)^{0.5}(b+1)^{0.5}db]


du=0.5(a+2)0.5(b+1)0.5da+0.5(a+2)0.5(b+1)0.5dbdu=0.5(a+2)^{-0.5}(b+1)^{0.5}da+0.5(a+2)^{0.5}(b+1)^{-0.5}db


along an indifference curve change in utility du=0

Also we may apply (a) along horizontal axis hence,

0.5(a+2)0.5(b+1)0.5da+0.5(a+2)0.5(b+1)0.5db=00.5(a+2)^{-0.5}(b+1)^{0.5}da+0.5(a+2)^{0.5}(b+1)^{-0.5}db=0


dadb=0.5(a+2)0.5(b+1)0.50.5(a+2)0.5(b+1)0.5=a+2b+1\frac{da}{db}=\frac{0.5(a+2)^{0.5}(b+1)^{-0.5}}{0.5(a+2)^{-0.5}(b+1)^{0.5}}=\frac{a+2}{b+1}


dadb=slope of indifference\frac{da}{db}= slope \ of\ indifference


=MRSa,b=MRS_{a,b } [Nominal rate of substitution between a and b]

As, MRSa,b<0MRS_{a,b } \lt0 implies robinsons indifference curve is negatively sloped







b.) Now MRSa,b=a+2b+1=ab+1+2b+1|MRS_{a,b }|=\frac{a+2}{b+1}=\frac{a}{b+1}+\frac{2}{b+1}


Now δMRSa,bδa=1b+1>0 as b>0\frac{\delta |MRS_{a,b }|}{\delta a}=\frac{1}{b+1}\gt0 \ as\ b\gt0

hence they are convex to the origin


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS