Budget constraint:B1=Px2X+5+Py1YB_{1} = P_{x2}X +5+ P_{y1}YB1=Px2X+5+Py1Y
At equilibrium;PxX=PyYP_{x}X=P_{y}YPxX=PyY
Let Px2XP_{x2}XPx2X be X;
At equilibrium 2X=B1+5B_{1}+5B1+5
X=B1+52X=\frac{B_{1}+5}{2}X=2B1+5
Quantity of good X:
B1+5=Px2XB_{1}+5=P_{x2}XB1+5=Px2X
X=B1+5Px2X=\frac{B1+5}{P_{x2}}X=Px2B1+5
Quantity of good Y;
B1=Py1YB_{1}=P_{y1}YB1=Py1Y
Y=B1Py1Y=\frac{B_{1}}{P_{y1}}Y=Py1B1
The new combination will be;
(B1+5Px2,\frac{B1+5}{P_{x2}},Px2B1+5, B1Py1\frac{B_{1}}{P_{y1}}Py1B1 )
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments