Question #274766

Maximize:

U = alog(X) + (1 − a)log(Y )

subject to:

I = PX X + PY Y


1. Find X* and Y* using the method of Lagrange multipliers.

2. Can we derive the demand function of X and Y in a general form, e.g:

X = f (PX , I)andY = f (PY , I).

3. Please make some conclusions about the demand derived from the

utility function.

4. Note: a special case, please solve the same problem if U=XY.


1
Expert's answer
2021-12-05T16:18:34-0500

Solution

1)

Lagrangian for the Problem :

L(x,y,λ)=alog(x)+(1a)log(y)+λ(IPxxPyy)L(x,y,\lambda) = a log(x)+(1-a)log(y)+\lambda(I-P_x x-P_y y)


First-order conditions(derivatives):


L/x=a/xλPx=0∂L/∂x=a/x-λ^* P_x=0 (1)


L/y=((1a))/yλPy=0∂L/∂y=((1-a))/y-λ^* P_y=0 (2)


L/λ=IPxxPyy=0∂L/∂λ=I-P_x x-P_y y=0 (3)


Using the first two conditions(1 and 2) we have

a/(1a)y/x=Px/Pya/(1-a) y^*/x^* =P_x/P_y


So,

y=(1a)/a(Px/Py)xy^*=(1-a)/a(P_x/P_y)x^* (4)


Substitute this into the constraint: I=Pxx+PyyI=P_x x+P_y y

I=Pxx+(Py((1a)/a)(Px/Py)xI=P_x x^* +(P_y ((1−a)/a)(P x ​ /P _ y ​ )x ∗

I=Pxx+((1a)/a)PxxI=P_x x^*+((1-a)/a)P_xx^*

I=Pxx(1(1a)/a)I =P_xx^* (1-(1-a)/a) (5)


Solve for xx^* using (5)

x=(I/Px)(1+(1a)/a)x^*=(I/P_x )(1+(1-a)/a)

x=(I/Px)(1/a)x^*=(I/P_x)(1/a)

x=aI/Pxx^*=aI/P_x (6)


Substitute this into (4)

y=((1a)/a)(Px/Py)(aI/Px)y^*=((1-a)/a)(P_x/P_y)(aI/P_x)


y=((1a)/a)(1/Py)(aI)y^*=((1-a)/a)(1/P_y)(aI)

y=(1a)(I/Py)y^* =(1-a)(I/P_y) (7)


2)

The demand function of X and Y can be derived in a general form, e.g: X = f (PX , I)and Y = f (PY , I), reasons been the value of x* in(6) is a function of both Px and I, and y* is a function of both Py and I.

So, X and Y can be generalized as

X = f (PX , I) and Y = f (PY , I) respectively.


3)

Derived demands are

x=aI/Pxx^*=aI/P_x

y=(1a)(I/Py)y^* =(1-a)(I/P_y)


The derivative of x* with respect to price PX

x/Px=aI/Px2<0∂x^*/∂P_x=-aI/P_x ^2<0


The derivative of y* with respect to price Py

y/Py=(1a)I/Py2<0∂y^*/∂P_y=-(1-a)I/P_y^2<0


Since the derivative of the two derived demands are less than 0, the demands for goods x and y are decreasing with their respective prices


4)

when U=XY

Lagrangian or the problem:

L(x,y,λ)=xy+λ(IPxxPyy)L(x,y,\lambda) = xy+ \lambda(I-P_x x-P_y y)


First-order conditions(derivatives):


L/x=yλPx=0∂L/∂x=y-λ^* P_x=0 (1)


L/y=xλPy=0∂L/∂y=x-λ^* P_y=0 (2)


L/λ=IPxxPyy=0∂L/∂λ=I-P_x x-P_y y=0 (3)


Using the first two conditions(1 and 2) we have


y/x=Px/Pyy^*/x^*=P_x/P_y

So,

y=x(Px/Py)y^*=x^*(P_x/P_y) (4)


Substitute this into the constraint: I=Pxx+PyyI=P_x x+P_y y

I=Pxx+Py(x(Px/Py))I=P_x x^* + P_y(x^*(P_x/P_y))

I=2PxxI=2P_x x^* (5)


Solve for x using (5)

x=I/2Pxx^*=I/2P_x


Substitute this into (4)

y=(I/2Px)(Px/Py)y^*=(I/2P_x)(P_x/P_y)

y=I/2Pyy^*=I/2P_y



So, the derived demand for the two goods(X and Y) are:

x=I/2Pxx^*=I/2P_x

y=I/2Pyy^*=I/2P_y


They are different from the first one, however, they can still be written in general form, X = f (PX , I)and Y = f (PY , I), just like the first one.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS