Question #273611

Show that the cost function for a firm with the constant returns Cobb-Douglas production function  y=Az1αz21−α is given by  C(p,y)=yp1αp11−αB , where B is a function of A and  α only. Derive the conditional input demands


1
Expert's answer
2021-12-01T21:57:03-0500

Y=AZ1αZ21αY=AZ_1^\alpha Z_2^{1-\alpha}

X=b0Lb1Kb2X=b_0L^{b_1}K^{b_2}

C=wL+rKC=wL+rK

C=f(x)C=f(x)

Maximize X=b0Lb1Kb2X=b_0L^{b_1}K^{b_2}

Subject to C=wL+rK.C=wL+rK.

δϕδL=b1XLλw=0\frac{\delta \phi}{\delta L}=b_1\frac{X}{L}-\lambda w=0

δϕδK=b2XKλr=0\frac{\delta \phi}{\delta K}=b_2\frac{X}{K}-\lambda r=0

δϕδλ=(CwLrK)=0\frac{\delta \phi}{\delta \lambda}=(C-wL-rK)=0

b1XL=λwb_1\frac{X}{L}=\lambda w

b2XK=λrb_2\frac{X}{K}=\lambda r

b1b2.KL=wr\frac{b_1}{b_2}.\frac{K}{L}=\frac{w}{r}

K=wr.b2b1LK=\frac{w}{r}.\frac{b_2}{b_1}L

X=b0[(wr)(b2b1)]b2L(b1+b2)X=b_0[(\frac{w}{r})(\frac {b_2}{b_1})]^{b_2}L^{(b_1+b_2)}

L=(rb1wb2)b2b1+b2(Xb0)1b1+b2L=(\frac{rb_1}{wb_2})^\frac{b_2}{b_1+b_2}(\frac{X}{b_0})^\frac{1}{b_1+b_2}

K=wr.b2b1.LK=\frac{w}{r}.\frac{b_2}{b_1}.L

K=(wb2rb1)1b1+b2(Xb0)1b1+b2K=(\frac{wb_2}{rb_1})^\frac{1}{b_1+b_2}(\frac{X}{b_0})^\frac{1}{b_1+b_2}

C=(1b0)1b1+b2[w(rb1wb2)b2b1+b2+r(wb2rb1)b1b1+b2].X1b1+b2C=(\frac{1}{b_0})^\frac{1}{b_1+b_2}[w(\frac{rb_1}{wb_2})^\frac{b_2}{b_1+b_2}+r(\frac {wb_2}{rb_1})^\frac{b_1}{b_1+b_2}].X^\frac{1}{b_1+b_2}

C(p,y)=yP1αP11αBC(p,y)=yP_1^\alpha P_1^{1-\alpha}B



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS