(1)
Production function:
q = 2 k l q=2\sqrt {kl} q = 2 k l
rental rate, v v v =$1
wage rate,w = w= w = $4
In the short run,k = 100 k=100 k = 100 , hence short run production function:
q = 2 100 × l = 20 l q=2\sqrt{100\times l}=20\sqrt{l} q = 2 100 × l = 20 l
A firm's short run total cost is given by:
S T C = S F C + S V C STC=SFC+SVC STC = SFC + S V C
where S F C SFC SFC is the short run fixed cost and S V C SVC S V C is the short run variable cost.
S F C = v × k = 1 × 100 = SFC=v\times k=1\times 100= SFC = v × k = 1 × 100 = $100.
S V C = w × l = 4 × l = SVC=w\times l=4\times l= S V C = w × l = 4 × l = $4 l 4l 4 l
S T C = S F C + S V C STC=SFC+SVC STC = SFC + S V C
= 100 + 4 l = =100+4l= = 100 + 4 l = $( 100 + 4 l ) (100+4l) ( 100 + 4 l )
Hence, the firm's short run total cost curve is 400 + l . 400+l. 400 + l .
Again, the firm's short run average cost:
S A C = S T C q SAC=\frac{STC}{q} S A C = q STC
S A C = ( 100 + 4 l ) 20 l SAC=\frac{(100+4l)}{20\sqrt l} S A C = 20 l ( 100 + 4 l )
S A C = 5 l + l 5 SAC =\frac{5}{\sqrt l}+\frac{\sqrt l}{5} S A C = l 5 + 5 l
The firm's short run marginal cost:
S M C = d ( S T C ) d q SMC=\frac{d(STC)}{dq} SMC = d q d ( STC )
S M C = d ( 100 + 4 l ) d q SMC=\frac{d(100+4l)}{dq} SMC = d q d ( 100 + 4 l )
d q = [ d ( 100 + 4 l ) d l ] [ d q d l ] dq=\frac{[\frac{d(100+4l)}{dl}]}{[\frac{dq}{dl}]} d q = [ d l d q ] [ d l d ( 100 + 4 l ) ]
= 4 10 l =\frac{4}{\frac{10}{\sqrt l}} = l 10 4
⟹ S M C = 4 × l 10 \implies SMC=4\times \frac{\sqrt l}{10} ⟹ SMC = 4 × 10 l
= 2 l 5 =\frac{2\sqrt l}{5} = 5 2 l .
(2)
SMC C=curve intersects SAC curve at the point where S A C = S M C SAC=SMC S A C = SMC .
So,
5 l + l 5 = 2 l 5 \frac {5}{\sqrt l +\frac{\sqrt l}{5}}=\frac {2\sqrt l}{5} l + 5 l 5 = 5 2 l
⟹ ( 25 + l ) 5 l = 2 l 5 \implies \frac{(25+l)}{5\sqrt l}=\frac {2\sqrt l}{5} ⟹ 5 l ( 25 + l ) = 5 2 l
⟹ 125 + 5 l = 10 l \implies 125+5l=10l ⟹ 125 + 5 l = 10 l
⟹ l = 25 \implies l=25 ⟹ l = 25
Thus, S M C SMC SMC curve intersects S A C SAC S A C curve at l = 25. l=25. l = 25.
Comments