Calculate the income elasticities for the following demand functions.
a) x(p,m) = m/2p*
b) x(p,m) = 10/p*
Demand is given by x=m(2p)x =\frac{ m}{(2p)}x=(2p)m
Price elasticity is given by
Ep=dxxdpp=dxdp×pxEp=\frac{ \frac{dx}{x}}{ \frac{dp}{p}} =\frac{ dx}{dp} \times \frac{p}{x}Ep=pdpxdx=dpdx×xp
dxdp=−m2×1p2\frac{dx}{dp} = \frac{-m}{2} \times \frac{ 1}{p\\^2}dpdx=2−m×p21
Plugging in,
Ep=−m2×1p2×2p2m=−1Ep=\frac{ -m}{2} \times \frac{ 1}{p^2} \times \frac{2p^2}{m} = -1Ep=2−m×p21×m2p2=−1
Income elasticity is given by
Em=dxxdmm=dxdm×mxEm =\frac{\frac{dx}{x}}{ \frac{dm}{m}} = \frac{dx}{dm} \times \frac{m}{x}Em=mdmxdx=dmdx×xm
dxdm=12p\frac{dx}{dm} =\frac{ 1}{2p}dmdx=2p1
Em=1(2p)×2p=1Em= \frac{1}{(2p)} \times 2p = 1Em=(2p)1×2p=1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments