Answer to Question #267650 in Microeconomics for Katie

Question #267650

A businessman uses K and L to produce X. Production function is: Q = 2K ( L – 2 )

PK = 600, PL = 300, TC = 15000

a) Determine marginal product function ( MP) of K and L. Determine MRTS

b) Determine Qmax

c) If he wants to produce 900 units, find out TCmin.


1
Expert's answer
2021-11-19T11:11:18-0500

Solution:

a.). MRTS = MPLMPK\frac{MP_{L} }{MP_{K} }

Q = 2K (L – 2)


MPL = QL\frac{\partial Q} {\partial L} = 2K


MPK = QK\frac{\partial Q} {\partial K} = 2L – 4


MRTS = 2K2L4=KL2\frac{2K}{2L} - 4 = \frac{K}{L} - 2

 

b.). Qmax:

Set MRTS = wr\frac{w}{r}

w = 300

r = 600

KL2=300600\frac{K}{L} - 2 =\frac{300}{600}


K = L21\frac{L}{2} - 1

Substitute in the TC function:

TC = wL + rK

15,000 = 300L + 600K

15,000 = 300L + 600(L21\frac{L}{2} - 1 )

L = 26

K = 2621=131=12\frac{26}{2} - 1 = 13 - 1 = 12

Qmax (L, K) = (26, 12)

 

c.). Set MRTS = wr\frac{w}{r}

w = 300

r = 600


KL2=300600\frac{K}{L} - 2 = \frac{300}{600}


K = L21\frac{L}{2} -1

Substitute in the production function:

Q = 2K (L – 2)

900 = 2(L21\frac{L}{2} - 1) (L – 2)

L = 32

K = 3221=161=15\frac{32}{2} - 1 = 16 - 1 = 15

Total Cost minimum (L, K) = (32, 15)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment