Question #264836

a.) EASTEK Co. operates in a competitive market. Its production function is q=L (to the power alpha) * K (to the power beta). The exponents alpha and beta are both less than 1. If the firm's capital is fixed, and it takes the wage and price as given, what is the firm's short-run demand for labour ? [13 marks]




b.) Pipi Co Ltd. operates in a competitive market. Its marginal product of labour is 1 over L (1÷L), and it takes the wage and prices as given. Derive the firm's short-run demand for labour as a function of "w" and "p".



How much labour will the firm hire if w = 2 and p = 10? [10 marks]





1
Expert's answer
2021-11-17T10:00:34-0500

(a)

f(L,K)=Q=ALαKβf(L,K)=Q=AL^\alpha K^\beta

The partial derivative of the CD function w.r.t. Labor(L) is:

δQδL=AαLα1Kβ\frac{\delta Q}{\delta L}=A\alpha L^{\alpha-1}K^\beta

δQδL=αALαL1Kβ\frac{\delta Q}{\delta L}=\alpha AL^\alpha L^{-1}K^\beta

δQδL=αALαKβL\frac{\delta Q}{\delta L}=\frac{\alpha AL^\alpha K^\beta}{L}

Quantity produced is based on labor and capital, therefore:

Q=ALαKβQ=AL^\alpha K^\beta ,

δQδL=αQL\frac{\delta Q}{\delta L}=\alpha \frac{Q}{L}

α=δQδLLQ\alpha =\frac{\delta Q}{\delta L}\frac{L}{Q} ..This will yield MPLMP_L

β=δQδKKQ\beta=\frac{\delta Q}{\delta K}\frac{K}{Q} ..This will yield MPKMP_K

The linear model of the function:

f(L,K)=Q=ALαKβf(L,K)=Q=AL^\alpha K^\beta

log(Q)=log(A)+αlog(L)+βlog(K)log(Q)=log(A)+\alpha log(L)+\beta log(K)

We come up with constraint minimization problem:

C(w,r.Y,A)=minwL+rKC(w,r.Y,A)=min wL+rK

s.t. f(L,K)=Q=ALαKβf(L,K)=Q=AL^\alpha K^\beta

To find optimal amount of inputs (L and K), solve the minimization constraint using Lagrange multiplier method:

l(w,r,L,K,Q)=wL+rK+λ(QALαKβl(w,r,L,K,Q)=wL+rK+\lambda (Q-AL^\alpha K^\beta

δlδL=w=λαALα1Kβ\frac{\delta l}{\delta L}=w=\lambda \alpha AL^{\alpha -1}K^\beta

δlδK=r=λβALαKβ1\frac{\delta l}{\delta K}=r=\lambda \beta AL^\alpha K^{\beta -1}

δlδλ=QALαKβ=0.\frac{\delta l}{\delta \lambda }=Q-AL^\alpha K^\beta=0.

Solve for L.

δlδKδlδL=rw=λβALαKβ1λαALα1Kβ\frac{\frac{\delta l}{\delta K}}{\frac{\delta l}{\delta L}}=\frac{r}{w}=\frac{\lambda \beta AL^\alpha K^{\beta-1}}{\lambda \alpha AL^{\alpha-1}K^\beta}

rw=βαLK\frac{r}{w}=\frac{\beta}{\alpha} \frac{L}{K}

L=rwαβKL=\frac{r}{w}\frac{\alpha}{\beta}K

L(as a function of Q,A,w and r):

L=(QA)1α+β(rwαβ)βαβL=(\frac{Q}{A})^\frac{1}{\alpha +\beta}(\frac{r}{w}\frac{\alpha}{\beta})^\frac{\beta}{\alpha-\beta}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS