(a)
f(L,K)=Q=ALαKβ
The partial derivative of the CD function w.r.t. Labor(L) is:
δLδQ=AαLα−1Kβ
δLδQ=αALαL−1Kβ
δLδQ=LαALαKβ
Quantity produced is based on labor and capital, therefore:
Q=ALαKβ ,
δLδQ=αLQ
α=δLδQQL ..This will yield MPL
β=δKδQQK ..This will yield MPK
The linear model of the function:
f(L,K)=Q=ALαKβ
log(Q)=log(A)+αlog(L)+βlog(K)
We come up with constraint minimization problem:
C(w,r.Y,A)=minwL+rK
s.t. f(L,K)=Q=ALαKβ
To find optimal amount of inputs (L and K), solve the minimization constraint using Lagrange multiplier method:
l(w,r,L,K,Q)=wL+rK+λ(Q−ALαKβ
δLδl=w=λαALα−1Kβ
δKδl=r=λβALαKβ−1
δλδl=Q−ALαKβ=0.
Solve for L.
δLδlδKδl=wr=λαALα−1KβλβALαKβ−1
wr=αβKL
L=wrβαK
L(as a function of Q,A,w and r):
L=(AQ)α+β1(wrβα)α−ββ
Comments