Question #263050

A consumer's Total Utility Function of two goods X and y are as follows:



TUx=50x-5x²



TUy=32y-4y²



Price of X=Rs.5



Price of y: Rs.8



Consumer income : 120



i) Derive consumer's budget constraint




ii) Derive the marginal utility X



iii) Derive marginal utility Y



iv) Find out the consumer optimum combination of good X and Y at the market.




1
Expert's answer
2021-11-09T10:45:49-0500

(i)TUx=50x5x2TUy=32y4y2Px=5Py=8Income=120(i)\\TUx = 50x - 5x^2\\ TUy = 32y - 4y^2\\ Px = 5\\ Py = 8\\ Income = 120

The budget line refers to the combination of two goods that a consumer can buy in the given budget or income.

Px×X+Py×Y=M5X+8Y=120Px\times X + Py\times Y = M\\ 5X + 8Y = 120

(ii)TU of X=50x5x2TU of Y=32y4y2MUx=TUxxMUx=5010x(iii)MUy=TUyyMUy=328y(ii)\\TU \space of \space X = 50x−5x^2\\TU \space of \space Y =32y−4y^2\\MU_x = \frac{∂TUx}{∂x}\\MU_x = 50 − 10x\\(iii)\\MU_y =\frac{ ∂TUy}{∂y}\\MUy = 32 − 8y

Optimal Bundle is achieved where MRS=PxPyMRS = \frac{Px}{Py}

MRS=MUxMUythereforeMUxMUy=PxPy5010x328y=588×(5010x)=5×(328y)40080x=16040Y80x=40y24080x=40y+2402x=y+6x=y+62MRS = \frac{MU_x}{MU_y}\\therefore\frac{ MU_x}{MU_y} = \frac{Px}{Py}\\\frac{50 − 10x}{32−8y} = \frac{5}{8}\\ 8\times (50 − 10x) = 5\times (32 − 8y)\\400 − 80x = 160 − 40Y\\−80x = −40y − 240\\80x = 40y + 240\\2x = y + 6\\x = \frac{y+6}{2}

Now Put the Value of X in budget constraint we get.

5X+8Y=1205×(y+62)+8Y=1205y302+8Y=1205y+30+16Y=24021y=210y=10we know x= y+62x=10+62x=85X + 8Y = 120\\5\times (\frac{y+6}{2}) + 8Y = 120\\\frac{5y − 30}{2} + 8Y = 120\\5y + 30 + 16Y = 240\\21y = 210\\y = 10\\we\space know\space x = \space{y+6}{2}\\x = \frac{10+6}{2}\\x = 8

therefore the optimal bundles are (8,10)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS