Question #257789

Assume there is consumer, his utility function is u(x,y) =8*x^0.5+y , and his budget constraint is px*x +y = m, which implies py = 1.


a.Please derive the Marshallian demand function of x.

b.Please derive the indirect utility function.

c.Please derive the expenditure function.


1
Expert's answer
2021-10-28T08:49:37-0400

a) Marshallian demand function of x


Max 8x0.5+y8x^{0.5} + y


Subject to Pxx+y=1Px^{x} + y = 1


use budget constrain to determine y


y=1pxxy = 1 - px^{x}


Substituting in the utility function


max f(x)=8x0.5+(1Pxx)f(x)= 8x^{0.5} + (1-Px^{x})


Take first derivative using product rule


f(x) = 4x0.5+Px24x^{-0.5} + Px^{2}


Set f(x)=0f(x) = 0 and obtain


4x0.5=Px24x^{-0.5} = - Px^{2}


Solving for x


x=Px2.54x= \frac{-Px^{2.5} }{4}



b) Indirect utility function

U(Px,y,M)=maxU(x,y)pxx+y=mU^*(Px,y,M) = max U(x,y)| px*x +y = m


=U(x,y)=U(x^*,y^*)


=U(Dx(Px,Py,M),Dy(Px,Py,M))= U(Dx(Px,Py,M), Dy(Px,Py,M))



c) Expenditure function


u=U(Px.Py,M)    M=M(Px,Py,u)u = U^*(Px.Py,M) \iff M=M^*(Px,Py,u)



M(Px,Py,u)=minPxX+PyyU(x,y)uM^*(Px,Py,u) = min{Px^X+Py^y|U(x,y)}\ge u

x=DxH(Px,Py,u)x^* = D_x^H (Px,Py, u) y=DyH(Px,Py,u)y^* = D_y ^H (Px,Py,u)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS