Given that: k units of capital and l units of labour
Q(k, l)="\\sqrt{k}\\sqrt{l}"
The cost to the firm of each unit of capital is $4, and the cost of each unit of labour is $1.
Q(k, l)="\\sqrt{4}\\sqrt{1}"
Q(k, l)=(2)(1)=2
"\\sqrt{k}\\sqrt{l}" =2
P(k, l)="\\sqrt{k}\\sqrt{l}" -2...........................(say)
"\\nabla"Q(k, l)="\\frac{1}{2\\sqrt{k}},\\frac{1}{2\\sqrt{l}}"
"\\nabla"P(k, l)="\\frac{1}{2\\sqrt{k}},\\frac{1}{2\\sqrt{l}}"
By Lagrange multipliers;
"\\nabla"Q="\\lambda\\nabla"P
("\\frac{1}{2\\sqrt{k}},\\frac{1}{2\\sqrt{l}}") ="\\lambda" ("\\frac{1}{2\\sqrt{k}},\\frac{1}{2\\sqrt{l}}")
"\\lambda" =1, k=4 and l=1
Q(k, l)="\\sqrt{k}\\sqrt{l}" =2 (The minimum weekly cost of producing a quantity of 2 units)
The minimum weekly cost of producing 200 units will therefore be:
(200 units"\\div" 2 units)"\\times 2\\$" =200"\\$" =200 dollars.
Comments
Leave a comment