Question #254324
for the constrained optimisation problem below, find the demand functions and the lagrangian multiplier. interpret the multiplier. max U(x, y)=4x ² + 3y ² subject to 3x + 4y=100
1
Expert's answer
2021-10-21T09:56:36-0400

Given,

maxU(x,y)=4x2+3y2 subject to 3x+4y=100max U(x,y)=4x^2+3y^2 \space subject\space to \space 3x+4y=100

The Lagrangian function for the above optimization problem is given below:

L=4x2+3y2+λ(1003x4y)L=4x^2+3y^2+λ(100−3x−4y)

Let us find the first order condition

Lx=8x3λLy=6y4λLλ=1003x4y\frac{∂L}{∂x}=8x−3λ\\\frac{∂L}{∂y}=6y−4λ\\\frac{∂L}{∂λ}=100−3x−4y

Let us substitute all the first order conditions equal to zero

Lx=08x3λ=08x=3λ.....equation 1Ly=06y4λ=06y=4λ...equation 2And,Lλ=01003x4y=0100=3x+4y.....equation 3\frac{∂L}{∂x}=0\\8x−3λ=0\\8x=3λ.....equation \space1\\\frac{∂L}{∂y}=0\\6y−4λ=0\\6y=4λ...equation \space 2\\And,\\\frac{∂L}{∂λ}=0\\100−3x−4y=0\\100=3x+4y.....equation\space 3

Let us divide equation 1 by 2

8x6y=3λ4λx=3×6y4×8x=9y16....equation 4\frac{8x}{6y}=\frac{3λ}{4λ}\\x=\frac{3×6y}{4×8}\\x=\frac{9y}{16}....equation\space 4

Let us substitute the value of x in equation 3

100=3×9y16+4y100=27y16+4y100=27y+64y16100=91y16y=100×1691y=17.58100=3×\frac{9y}{16}+4y\\100=\frac{27y}{16}+4y\\100=\frac{27y+64y}{16}\\100=\frac{91y}{16}\\y=\frac{100×16}{91}\\y=17.58

Let us substitute the value of y=17.58 in equation 4

x=9×17.5816x=9.89x=\frac{9×17.58}{16}\\x=9.89

Let us substitute the values of x in equation 1 for the value of the multiplier

8×9.89=3λλ=8×9.893λ=26.37 approx8×9.89=3λ\\λ=\frac{8×9.89}{3}\\λ=26.37 \space approx

The value of the Lagrangian multiplier means if the budget of the consumer increases by 1 unit then the total utility will increase by 26.37 units.

 

Note: in the above part the exact demand has been calculated because the prices and budget were given in the budget constraint. To find the demand function let us use the budget constraint as given below:

Budget constraint:xpx+ypy=mL=4x2+3y2+λ(mxpxypy)Budget\space constraint: xp_x+yp_y=m\\L=4x^2+3y^2+λ(m−xp_x−yp_y)

Let us find the first order conditions

Lx=8xλpxLy=6yλpyLλ=mxpxypy\frac{∂L}{∂x}=8x−λp_x\\\frac{∂L}{∂y}=6y−λp_y\\\frac{∂L}{∂λ}=m−xp_x−yp_y

Let us substitute all the first order conditions equal to zero

Lx=08xλpx=08x=λpx.....equation 1Ly=06yλpy=06y=λpy...equation 2And,Lλ=0mxpxypy=0m=xpx+ypy.....equation 3divide equation 1 by 28x6y=λpxλpyx=6ypx8py....equation 4\frac{∂L}{∂x}=0\\8x−λp_x=0\\8x=λp_x.....equation \space 1\\\frac{∂L}{∂y}=0\\6y−λp_y=0\\6y=λp_y...equation\space 2\\And,\\\frac{∂L}{∂λ}=0\\m−xp_x−yp_y=0\\m=xp_x+yp_y.....equation\space 3\\ divide \space equation\space 1 \space by \space 2\\\frac{8x}{6y}=\frac{λp_x}{λp_y}\\x=\frac{6yp_x}{8p_y}....equation \space 4

Let us substitute the value of x in equation 3

m=px×6ypx8py+ypym=6ypx28py+ypym=6ypx2+8yp2y8pym=y(6px2+8py28py)y=m6px2+8py28pyy=8pym6px2+8py2...(demand function of good y)m=px×\frac{6yp_x}{8p_y}+yp_y\\m=\frac{6yp^2_x}{8p_y}+yp_y\\m=\frac{6yp^2_x+8yp^2y}{8p_y}\\m=y(\frac{6p^2_x+8p^2_y}{8p_y})\\y=\frac{m}{\frac{6p^2_x+8p^2_y}{8p_y}}\\y=\frac{8p_ym}{6p^2_x+8p^2_y}...(demand\space function \space of \space good \space y)

Let us substitute the value of y in equation 4

x=6×8pym6px2+8py2×px8pyx=48mpxpy(6px2+8py2)8pyx=48mpxpy48px2py+64p3y..(demand function of good x)x=\frac{6×\frac{8p_ym}{6p^2_x+8p^2_y}×px}{8py}\\x=\frac{48mp_xp_y}{(6p^2_x+8p^2_y)8p_y}\\x=\frac{48mp_xp_y}{48p^2_xp_y+64p^3y}..(demand \space function\space of \space good\space x)

The demand equations as a function of px, py, and m are given below:

x=48mpxpy48px2py+64py3y=8mpy6px2+8py2x=\frac{48mp_xp_y}{48p^2_xp_y+64p^3_y}\\y=\frac{8mp_y}{6p^2_x+8p^2_y}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS