Given,
maxU(x,y)=4x2+3y2 subject to 3x+4y=100
The Lagrangian function for the above optimization problem is given below:
L=4x2+3y2+λ(100−3x−4y)
Let us find the first order condition
∂x∂L=8x−3λ∂y∂L=6y−4λ∂λ∂L=100−3x−4y
Let us substitute all the first order conditions equal to zero
∂x∂L=08x−3λ=08x=3λ.....equation 1∂y∂L=06y−4λ=06y=4λ...equation 2And,∂λ∂L=0100−3x−4y=0100=3x+4y.....equation 3
Let us divide equation 1 by 2
6y8x=4λ3λx=4×83×6yx=169y....equation 4
Let us substitute the value of x in equation 3
100=3×169y+4y100=1627y+4y100=1627y+64y100=1691yy=91100×16y=17.58
Let us substitute the value of y=17.58 in equation 4
x=169×17.58x=9.89
Let us substitute the values of x in equation 1 for the value of the multiplier
8×9.89=3λλ=38×9.89λ=26.37 approx
The value of the Lagrangian multiplier means if the budget of the consumer increases by 1 unit then the total utility will increase by 26.37 units.
Note: in the above part the exact demand has been calculated because the prices and budget were given in the budget constraint. To find the demand function let us use the budget constraint as given below:
Budget constraint:xpx+ypy=mL=4x2+3y2+λ(m−xpx−ypy)
Let us find the first order conditions
∂x∂L=8x−λpx∂y∂L=6y−λpy∂λ∂L=m−xpx−ypy
Let us substitute all the first order conditions equal to zero
∂x∂L=08x−λpx=08x=λpx.....equation 1∂y∂L=06y−λpy=06y=λpy...equation 2And,∂λ∂L=0m−xpx−ypy=0m=xpx+ypy.....equation 3divide equation 1 by 26y8x=λpyλpxx=8py6ypx....equation 4
Let us substitute the value of x in equation 3
m=px×8py6ypx+ypym=8py6ypx2+ypym=8py6ypx2+8yp2ym=y(8py6px2+8py2)y=8py6px2+8py2my=6px2+8py28pym...(demand function of good y)
Let us substitute the value of y in equation 4
x=8py6×6px2+8py28pym×pxx=(6px2+8py2)8py48mpxpyx=48px2py+64p3y48mpxpy..(demand function of good x)
The demand equations as a function of px, py, and m are given below:
x=48px2py+64py348mpxpyy=6px2+8py28mpy
Comments