Find the derivative of y= 4tan5α
Given
"Y=4tan5\\alpha............(1)"
We know that
"\\frac{d}{da}(tanm\\alpha)=sec^2(m\\alpha).\\frac{d}{d\\alpha}(ma)\\\\=sec^2(m\\alpha)=(mx_1)"
"\\implies\\frac{d}{d\\alpha}(tanm\\alpha)=msec^2(m\\alpha)..................(2)"
Now differentiating (1) wrt "\\alpha" both sides we get
"\\frac{dY}{d\\alpha}=\\frac{d}{d\\alpha}(4tan5\\alpha)=4.\\frac{d}{d\\alpha}(tan5\\alpha)\\\\=4\\times5sec^2(5\\alpha): using(2)"
"\\frac{dY}{d\\alpha}=20sec^2(5\\alpha)"
Comments
Leave a comment