Question #250588

Find the derivative of y= 4tan5α

1
Expert's answer
2021-10-13T10:17:58-0400

Given

Y=4tan5α............(1)Y=4tan5\alpha............(1)

We know that

dda(tanmα)=sec2(mα).ddα(ma)=sec2(mα)=(mx1)\frac{d}{da}(tanm\alpha)=sec^2(m\alpha).\frac{d}{d\alpha}(ma)\\=sec^2(m\alpha)=(mx_1)

    ddα(tanmα)=msec2(mα)..................(2)\implies\frac{d}{d\alpha}(tanm\alpha)=msec^2(m\alpha)..................(2)


Now differentiating (1) wrt α\alpha both sides we get

dYdα=ddα(4tan5α)=4.ddα(tan5α)=4×5sec2(5α):using(2)\frac{dY}{d\alpha}=\frac{d}{d\alpha}(4tan5\alpha)=4.\frac{d}{d\alpha}(tan5\alpha)\\=4\times5sec^2(5\alpha): using(2)


dYdα=20sec2(5α)\frac{dY}{d\alpha}=20sec^2(5\alpha)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS