An agent consumes quantity (x1,x2) of goods 1 and 2. Here is his utility function: 𝑈(𝑥1, 𝑥2) = min {𝑥1, 2 ∗ 𝑥2}.
(a) Draw a typical indifference curve for the agent.
(b) The agent has income m=10, prices are (p1, p2) = (1, 3). Derive Marshallian demand (x*1, x*2).
a.
b.
"m=10,\\space (p_1,p_2)=(1,3)\\\\u(x_1, x_2)=min\\{x_1,2x_2\\}\\\\x_1=2x_2"
Budget constraint
"p_1x_1+p_2x_2=m"
"x_1+3x_2=10"
Substituting x1 in the equation
"2x2+3x_2=10\\\\5x_2=10\\\\x_2=2"
"x_1=4"
optimal bundle "(x*_1,x*_2)=(4,2)"
marshallian demand
"x_1=2x_2"
X1 put in the budget constraint
"p_1x_1+p_2x_2=m\\\\p_1(2x_2)p_2x_2=m\\\\2p_1x_2+p_2x_2=m\\\\x_2(2p_1+p_2)=m\\\\x*_2=\\frac{m}{2p_1+p_2}.................marshallian\\space demand\\space x_2"
"x*_1=\\frac{2m}{2p_1+p_2}...............marshallian\\space demand \\space x_1"
Comments
Leave a comment