Answer to Question #249493 in Microeconomics for learner

Question #249493

An agent consumes quantity (x1,x2) of goods 1 and 2. Here is his utility function: 𝑈(𝑥1, 𝑥2) = min {𝑥1, 2 ∗ 𝑥2}.

(a) Draw a typical indifference curve for the agent.

(b) The agent has income m=10, prices are (p1, p2) = (1, 3). Derive Marshallian demand (x*1, x*2).


1
Expert's answer
2021-10-11T16:48:42-0400

a.




b.

m=10, (p1,p2)=(1,3)u(x1,x2)=min{x1,2x2}x1=2x2m=10,\space (p_1,p_2)=(1,3)\\u(x_1, x_2)=min\{x_1,2x_2\}\\x_1=2x_2


Budget constraint

p1x1+p2x2=mp_1x_1+p_2x_2=m

x1+3x2=10x_1+3x_2=10

Substituting x1 in the equation

2x2+3x2=105x2=10x2=22x2+3x_2=10\\5x_2=10\\x_2=2


x1=4x_1=4


optimal bundle (x1,x2)=(4,2)(x*_1,x*_2)=(4,2)

marshallian demand

x1=2x2x_1=2x_2

X1 put in the budget constraint

p1x1+p2x2=mp1(2x2)p2x2=m2p1x2+p2x2=mx2(2p1+p2)=mx2=m2p1+p2.................marshallian demand x2p_1x_1+p_2x_2=m\\p_1(2x_2)p_2x_2=m\\2p_1x_2+p_2x_2=m\\x_2(2p_1+p_2)=m\\x*_2=\frac{m}{2p_1+p_2}.................marshallian\space demand\space x_2


x1=2m2p1+p2...............marshallian demand x1x*_1=\frac{2m}{2p_1+p_2}...............marshallian\space demand \space x_1



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment