Question #242236

Consider a consumer with utility function u(x1, x2) = α_1x_1^( 2) + α_2x_2^( 2) where α1 > 0 and α2 > 0. Assume that p1, p2 > 0. (a) Show that the utility function represents strongly monotone preferences (b) Draw indifference curves passing through points (1, 2), (3, 3) and (0, 3). What properties of the preference relation can you derive from these indifference curves? (c) State the expenditure minimization problem and derive the Hicksian demand. Does the EMP problem have a unique solution at every price vector p >> 0? (d) Derive expenditure function e(p, u). Verify that it is homogeneous of degree 1 in p and increasing in u. (e) Using expenditure function and Hicksian demand, calculate Walrasian demand and indirect utility 


1
Expert's answer
2021-09-27T11:18:04-0400

GivenU=α1X12+α2X22Whereα1>0 and α2>0Given U=α_1X_1^2+α_2X_2^2\\ Where\\ α_1>0 \space and\space α_2>0

Part a)

For Strictly monotone preference shows that consumer consumes more of one good and marginal utility of the good is positive. and total utility is increasing.

U=α1X12+α2X22U=α_1X_1^2+α_2X_2^2

UX1=2α1X1\frac{∂U}{ ∂X_1} =2α_1X_1 −−−− It is positive When α1>0

UX2=2α2X2\frac{∂U}{ ∂X_2} =2α_2X_2 −−−− It is positive When α2>0

That means consumer is ready to consume more of the 2 producs as it's

 marginal productivity is positive.

For Strictly monotone preference we need to prove that MRS should be

 positive as it shows that indifference curve is downward sloping


It  shows that utility function is showing increasing monotone prefernce.

MRS=MUX1MUX2MRS=2α1X12α2X2Whenα1>0andα2>0MRS=\frac{MUX_1}{MUX_2}\\MRS=\frac{2α_1X_1}{2α_2X_2}−−−−− When α1>0 and α2>0

Part b)

Given Quantity of X1and X2=(1,2),(3,3),(0,3)

We will substitute values in utility function

If it gives same utility means consumer is indifferent between all combination but if it gives different utility then consumer has preference relations.

U=α1X12+α2X2supposeα1=0.5andα2=0.6Then For X1=1 and X2=2U=0.5×(1)2+0.6(2)2U=2.9Then For X1=3 and X2=3U=0.5×(3)2+0.6(3)2U=9.9Then For X1=0 and X2=3U=0.5×(0)2+0.6(3)2U=5.4U=α_1X_1^2+α_2X^2\\ suppose \\α_1=0.5 \\and\\ α_2=0.6\\Then\space For\space X_1=1\space and\space X_2=2\\U=0.5\times (1)^2+0.6(2)^2\\U=2.9\\Then \space For\space X_1=3 \space and\space X2=3\\U=0.5\times (3)^2+0.6(3)^2\\U=9.9\\Then \space For\space X_1=0\space and\space X_2=3\\U=0.5\times (0)^2+0.6(3)^2\\U=5.4

We can observe that all the point are giving different utility so consumer is not indifferent between these indifference curves



We can observe that ICand IC3 are convex to the origin and and it fulfills the highest indifference curve shows higher utility.

IC2 has the corner solution 

IC3>IC2 >IC1 is the relation of preference among the indifference curves.


Part c)

 Minmization of expenditure

Here constraint is constant utility

U=α1X12+α2X22U=α_1X_1^2+α_2X_2^2

MinE=P1X1+P2X2+μ(Uα1X12α2X22)EX1=P1μ2α1X1(1)EX2=P2μ2α2X2(2)using 1 and 2X1=α2P1X2α1P2(3)Min E=P_1X_1+P_2X_2+μ(U−α_1X_1^2−α_2X_2^2)\\\frac{∂E}{∂X_1}=P_1−μ_2α_1X_1−−−−(1)\\\frac{∂E}{∂X_2}=P_2−μ_2α_2X_2−−−−(2)\\ using \space 1 \space and \space 2\\ X_1=\frac{α_2P_1X_2}{α_1P_2}−−−−−(3)

By substituting X1 value in Constraint

U=α1(α2P1X2α1P2)2+α2X22X2=U(α2P1α1P2)α2⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯U=α_1(\frac{α_2P_1X_2}{α_1P_2})^2+α_2X_2^2\\X_2=\sqrt{\frac{U}{(\frac{α_2P_1}{α_1P_2})−α_2}}⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯−−−  Hicksian demand curve for X2

By substituting X2 into equation 3

X1=(α2P1α1P2)U(α2P1α1P2)α2⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯X_1= (\frac{α_2P_1}{α_1P_2})\sqrt{\frac{U}{(\frac{α_2P_1}{α_1P_2})−α_2}}⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Hicksian demand curve for X2−−Hicksian demand curve for X1

We can conclude that Every price vector XI and X2 values will be unique solution.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS