Consider a consumer with utility function u(x1, x2) = α_1x_1^( 2) + α_2x_2^( 2) where α1 > 0 and α2 > 0. Assume that p1, p2 > 0. (a) Show that the utility function represents strongly monotone preferences (b) Draw indifference curves passing through points (1, 2), (3, 3) and (0, 3). What properties of the preference relation can you derive from these indifference curves? (c) State the expenditure minimization problem and derive the Hicksian demand. Does the EMP problem have a unique solution at every price vector p >> 0? (d) Derive expenditure function e(p, u). Verify that it is homogeneous of degree 1 in p and increasing in u. (e) Using expenditure function and Hicksian demand, calculate Walrasian demand and indirect utilityÂ
"Given \n\nU=\u03b1_1X_1^2+\u03b1_2X_2^2\\\\\nWhere\\\\ \u03b1_1>0 \\space and\\space \u03b1_2>0"
Part a)
For Strictly monotone preference shows that consumer consumes more of one good and marginal utility of the good is positive. and total utility is increasing.
"U=\u03b1_1X_1^2+\u03b1_2X_2^2"
"\\frac{\u2202U}{\n\n\u2202X_1}\n\n\n\n=2\u03b1_1X_1" −−−− It is positive When α1>0
"\\frac{\u2202U}{\n\n\u2202X_2}\n\n\n\n=2\u03b1_2X_2" −−−− It is positive When α2>0
That means consumer is ready to consume more of the 2 producs as it's
 marginal productivity is positive.
For Strictly monotone preference we need to prove that MRS should be
 positive as it shows that indifference curve is downward sloping
It  shows that utility function is showing increasing monotone prefernce.
"MRS=\\frac{MUX_1}{MUX_2}\\\\MRS=\\frac{2\u03b1_1X_1}{2\u03b1_2X_2}\u2212\u2212\u2212\u2212\u2212 When \u03b11>0 and \u03b12>0"
Part b)
Given Quantity of X1and X2=(1,2),(3,3),(0,3)
We will substitute values in utility function
If it gives same utility means consumer is indifferent between all combination but if it gives different utility then consumer has preference relations.
"U=\u03b1_1X_1^2+\u03b1_2X^2\\\\ suppose \\\\\u03b1_1=0.5 \\\\and\\\\ \u03b1_2=0.6\\\\Then\\space For\\space X_1=1\\space and\\space X_2=2\\\\U=0.5\\times (1)^2+0.6(2)^2\\\\U=2.9\\\\Then \\space For\\space X_1=3 \\space and\\space X2=3\\\\U=0.5\\times (3)^2+0.6(3)^2\\\\U=9.9\\\\Then \\space For\\space X_1=0\\space and\\space X_2=3\\\\U=0.5\\times (0)^2+0.6(3)^2\\\\U=5.4"
We can observe that all the point are giving different utility so consumer is not indifferent between these indifference curves
We can observe that IC1Â and IC3Â are convex to the origin and and it fulfills the highest indifference curve shows higher utility.
IC2Â has the corner solutionÂ
IC3>IC2Â >IC1 is the relation of preference among the indifference curves.
Part c)
 Minmization of expenditure
Here constraint is constant utility
"U=\u03b1_1X_1^2+\u03b1_2X_2^2"
"Min E=P_1X_1+P_2X_2+\u03bc(U\u2212\u03b1_1X_1^2\u2212\u03b1_2X_2^2)\\\\\\frac{\u2202E}{\u2202X_1}=P_1\u2212\u03bc_2\u03b1_1X_1\u2212\u2212\u2212\u2212(1)\\\\\\frac{\u2202E}{\u2202X_2}=P_2\u2212\u03bc_2\u03b1_2X_2\u2212\u2212\u2212\u2212(2)\\\\ using \\space 1 \\space and \\space 2\\\\ X_1=\\frac{\u03b1_2P_1X_2}{\u03b1_1P_2}\u2212\u2212\u2212\u2212\u2212(3)"
By substituting X1 value in Constraint
"U=\u03b1_1(\\frac{\u03b1_2P_1X_2}{\u03b1_1P_2})^2+\u03b1_2X_2^2\\\\X_2=\\sqrt{\\frac{U}{(\\frac{\u03b1_2P_1}{\u03b1_1P_2})\u2212\u03b1_2}}\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u2212\u2212\u2212" Â Hicksian demand curve for X2
By substituting X2 into equation 3
"X_1= (\\frac{\u03b1_2P_1}{\u03b1_1P_2})\\sqrt{\\frac{U}{(\\frac{\u03b1_2P_1}{\u03b1_1P_2})\u2212\u03b1_2}}\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u23af\u23af" Hicksian demand curve for X2−−Hicksian demand curve for X1
We can conclude that Every price vector XI and X2 values will be unique solution.
Comments
Leave a comment